摘要
在灰色系统缓冲算子公理体系下,证明了下列结果:若d是一弱化缓冲算子,则x(k)d是由x(k)···x(n)所构成的表达式.f为严格单调递增函数,g为其反函数.在d中,用f(x(k))替换x(k)d,对得到的表达式用函数g加以作用,最后的表达式记为e.若d为弱化缓冲算子,则e也为弱化缓冲算子.
Based on the present theories of buffer operators,the following results is proved:If d is a weakening buffer operator,x(k)d is an expression made up of x(k) … x(n).f is a strictly monotone function,and g is its inverse function.While d is working on the data sequence,f(x(k)) is used to take the place of x(k)d.Then g is used to work on the resulting expression,and the result is noted with e.So if d is weakening buffer operator,e is also a weakening buffer operator.
出处
《控制与决策》
EI
CSCD
北大核心
2010年第6期958-960,共3页
Control and Decision
基金
国家自然科学基金项目(70473037)
南京航空航天大学创新集体和科研创新基金项目(Y0488-091)