摘要
利用Fourier变换和Littlewood-Paley理论,讨论了带粗糙核的超奇异积分算子的加权有界性.证明了带粗糙核的超奇异积分算子从Sobolev空间到Lebesgue空间的有界性.
The Fourier transform and Littlewood-Paley theory were used to give the weighted boundedness of the strongly singular integral operator. It is shown that the strongly singular integral operator is bounded from the Sobolev space to the Lebesgue space.
出处
《应用数学和力学》
CSCD
北大核心
2010年第6期731-738,共8页
Applied Mathematics and Mechanics
基金
国家自然科学基金资助项目(10771110)
教育部重大项目基金资助项目(309018)
关键词
超奇异积分算子
粗糙核
AP权
strongly singular intergral operators
rough kernels
Ap weights