期刊文献+

自组织特征映射网络在建筑工程分类中的应用 被引量:1

Application of SOFM network in building project classification
下载PDF
导出
摘要 针对传统建筑工程造价估算方法耗时量大、计算繁琐、误差频出的问题,提出了一种用自组织特征映射(SOFM)网络对建筑工程量样本量化后的值进行聚类的方法。该方法不需要手动标识训练数据集就可以实现不同类型的建筑样本自动分类,有助于提高传统建筑工程造价估算的效率。最后,通过实例验证了该方法的实用性和有效性。实验结果表明,改进的方法用于建筑工程造价估算较传统方法而言具有更高的准确率和更低的误报率。 The traditional project cost estimation in architecture has many problems such as huge time-consumption,complicated calculation,and frequent measurement error.Therefore,a method of clustering which could deal with architecture samples by Self-Organizing Feature Map (SOFM) network was proposed.This method did not need to identify training data set manually to get classification from different sorts of samples,and it did help to improve the efficiency of the traditional architectural project cost estimation.Finally,the availability of the algorithm in this method was proved.Compared with the traditional methods,the experimental results demonstrate that the improved method has a higher accuracy rate and a lower false positive rate.
出处 《计算机应用》 CSCD 北大核心 2010年第6期1543-1546,1576,共5页 journal of Computer Applications
基金 国家"十一五"科技支撑计划项目(2007BAF23B0505)
关键词 工程造价估算 神经网络 自组织特征映射 建筑施工 特征 project cost estimation neural network Self-Organizing Feature Map (SOFM) building construction feature
  • 相关文献

参考文献10

  • 1DOHNAL V,KUCA K,JUN D.what are artificial neural networks and what they can do?[J].Biomedical papers of the Medical Faculty of the University Palacky,Olomouc,Czechoslovakia,2005,149(2):221-224. 被引量:1
  • 2KOHONEN T.Self-organizing neural projections[J].Neural Networks,2006,19(6/7):723-755. 被引量:1
  • 3ROJAS I,GONZALEZ J,POMARES H,et al.Multidimensional and multideme genetic algorithms for the construction of fuzzy systems[J].International Journal of Approximate Reasoning,2001,26(3):179-210. 被引量:1
  • 4SHAPIRO A F.The merging of neural networks,fuzzy logic,and genetic algorithms[J].Insurance:Mathematics and Economics,2002,31(1):115-131. 被引量:1
  • 5LIN C T,LEE C S G.Neural-network-based fuzzy logié ontrol and decision system[J].IEEE Transactions on Computers,1991,40(12):1320-1336. 被引量:1
  • 6YU W D,SKIBNIEWSK M J.A neuro-fuzzy computational approach to constructability knowledge acquisition for construction technology evaluation[J].Automation in Construction,1999,8(5):539-552. 被引量:1
  • 7KAWAKAMI J,HOSHI K,ISHIYAMA A,et al.Application of a self-organizing map to quantitative structure-activity relationship analysis of carboquinone and benzodiazepine[J].Chemical and Pharmaceutical Bulletin,2004,52(6):751-756. 被引量:1
  • 8FABRY-ASZTALOS L,ANDONIE R,COLLAR C J,et al.A genetic algorithm optimized fuzzy neural network analysis of the affinity of inhibitors for HIV-1 protease[J].Bioorganic&Medicinal Chemistry,2008,16(6):2903-2911. 被引量:1
  • 9KOHONEN T,SOMERVUO P.How to make large self-organizing maps for nonvectorial data[J].Neural Networks,2002,15(8/9):945-996. 被引量:1
  • 10SAMECKA-CYMERMAN A,STANKIEWICZ A,KOLON K,et al.Self-organizing feature map(neural networks)as n tool in classification of the relations between chemical composition of aquatic bryophytes and types of streambeds in the Tatra national park in Poland[J].Chemosphere,2007,67(5):954-1013. 被引量:1

同被引文献7

引证文献1

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部