期刊文献+

多断层融合的肺CT肿瘤靶区超分辨率重建 被引量:6

Super-resolution reconstruction of pulmonary nodules based on CT multi-section fusion
下载PDF
导出
摘要 针对由曝光不均、噪声等因素引起的病灶区CT数据漏检、边界模糊等问题,设计了一种多方向神经网络(NN)插值算法。通过融合各断层层内和层间信息,对病灶区进行精确超分辨率重建。首先,将预测网络拓展为多方向三维空间;然后,根据肿瘤特殊灰度分布特征,设计最优初始权值;最后,预测漏检数据,提高病灶区分辨率。将本文算法与当前具有代表性的3种超分辨率重建算法PCGLS法、180°线性插值、单方向神经网络方法进行比较,结果表明:本文方法实时性更好,迭代次数平均减少25.9%,重建图像病灶区定位更精确,空间分辨率更高,质心偏离度平均降低27.1%,中心偏离度平均降低23.0%,病灶面积平均减少21.5%,平均PSNR提高了1.59 dB。本算法不但适用于肺部CT图像,也可以根据具体图像特征推广到其他生物信号和遥感图像等领域中。 An interpolation algorithm based on multi-direction Neural Networks(NN) is presented to solve the problems on lost data and fuzzy boundary in CT images caused by the unevenness exposure and noise.The information in every section and between different sections is integrated for the super-resolution reconstruction of focal zones.Firstly,a forecast net is extended to a 3D space,then optimal initial weights are designed according to the special gray feature distribution of pulmonary nodules.Finally,lost data are forecasted to improve the resolution.The results of simulation experiments indicate that this approach can improve performance in several respects such as location,real-time and PSNRs as compared with the present representative three methods,PCGLS,180° linear interpolation and one-way neural network.It is shown that the deviations of centre and centroid are averagely reduced by 27.1% and 23.0% respectively,and the target area and the iterations are averagely reduced by 21.5% and 25.9%,respectively.Moreover,the average PSNR is increased by 1.59 dB.The proposed method can be used in not only pulmonary CT images but also biological and remote sensing images.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2010年第5期1212-1218,共7页 Optics and Precision Engineering
基金 国家自然科学基金资助项目(No.60602035)
关键词 CT图像 超分辨率重建 靶区重建 信息融合 三维预测 CT image super-resolution reconstruction target location information fusion 3D forecast
  • 相关文献

参考文献14

  • 1沈焕锋,李平湘,张良培,王毅.图像超分辨率重建技术与方法综述[J].光学技术,2009,35(2):194-199. 被引量:33
  • 2ELAD M,FEUL E A.Restoration of a single superresolution image from several blurred,noisy,and under sampled measured images[J].IEEE Transactions on Image Processing,1997,6(12):1646-1658. 被引量:1
  • 3覃凤清,何小海,陈为龙,吴炜,杨晓敏.一种图像配准的超分辨率重建[J].光学精密工程,2009,17(2):409-416. 被引量:20
  • 4NAGY J G,PALMER K,PERRONE L.Iterative methods for image deblurring:a Matlab object-oriented approach[J].Numerical Algorith,2004,36:73-93. 被引量:1
  • 5RAJAGOPALAN A N,KIRAN V P.Motion-free super resolution and the role of relative blur[J].Journal of the Optical Society of America A:Optics and Image Science and Vision,2003(20):2022-2032. 被引量:1
  • 6刘梅,刘慧念,王彦珍,权太范.基于预条件共轭梯度的超分辨图像重构方法[J].哈尔滨工业大学学报,2003,35(8):926-929. 被引量:2
  • 7李化欣.共轭梯度法在图像重建中的应用[J].CT理论与应用研究(中英文),2007,16(2):31-35. 被引量:2
  • 8ASAD B,DU Z J,SUN L N.An interpolation method based on generalized regression neural network for ultrasonic 3D reconstruction[C].Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems,2006:5136-5140. 被引量:1
  • 9ELIZONDO D,ZHOU S M,CHRYSOSTOMOU C.Surface reconstruction techniques using neural networks to recover noisy 3D scenes[C].ICANN,2005,Part I,LNCS 5163:857-866. 被引量:1
  • 10WU Q,SHEN X Q,LI Y,et al..Classifying the multiplicity of the EEG source models using sphere-shaped support vector machines[J].IEEE Trans.on Magnetics,2005,41(5):1912-1915. 被引量:1

二级参考文献52

共引文献53

同被引文献21

  • 1张友旺,桂卫华,赵泉明.基于动态递归模糊神经网络的自适应电液位置跟踪系统[J].控制理论与应用,2005,22(4):551-556. 被引量:15
  • 2郑晓虎,朱荻.模糊神经网络在UV-LIGA工艺优化中的应用[J].光学精密工程,2006,14(1):139-144. 被引量:17
  • 3MASTORCOSTAS P A,THEOCHARIS J B. A re current fuzzy-neural model for dynamic system iden tification[J].IEEE Trans. Syst. , Man and Cybet. Part B: Cybernetics. ,2002,32(2) :176-190. 被引量:1
  • 4JUANG C F. A TSK-type recurrent fuzzy network for dynamic systems processing by neural network and genetic algorithm [J]. IEEE Trans. Fuzzy Systems, 2002,10(2) :155-170. 被引量:1
  • 5KARNIK N N, MENDEl. J M, LIANG Q. Type-2 fuzzy logic systems[J].IEEE Trans. Fuzzy Systems, 1999,7(6) :643- 658. 被引量:1
  • 6MENDEl. J M. Type-2 fuzzy sets made simple[J]. IEEE Trans. Fuzzy Systems, 2002, 10(2): 117- 127. 被引量:1
  • 7JOHN R, COUPLAND S. Type-2 fuzzy logic: A historical view[J]. IEEE ComDut. Intell. Mag., 2007,2(1) :57-62. 被引量:1
  • 8ZENG J, LIU Z Q. Type 2 fuzzy hidden Markov models and their application to speech recognition [J]. IEEE Trans. Fuzzy Syst. , 2006, 14 (3): 454-467. 被引量:1
  • 9JUANG C F,CHIU S H,CHANG S W. A Self- organizing TS-type fuzzy network with support vector learning and its application to classification problems[J]. IEEE Trans, Fuzzy Syst, 2007,15 (5) :998- 1008. 被引量:1
  • 10JUANG CH F. A self-Evolving Internal Type 2 Fuzzy Neural Network With Online Structure and Parameter learning[J]. IEEE Trans,Fuzzy Syst, 2008,16(6) : 1411-1424. 被引量:1

引证文献6

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部