摘要
提出了Poisson重力边值问题,即关于扰动位的Poisson方程的Stokes问题和Neumann问题。作为导引,先研究Poisson方程的Dirichlet问题.再分别引入一种辅助函数,将Stokes问题和Neumann问题改化为Dirichlet问题,从而立即得到它们的积分解。最终解式表现为两部分叠加:一部分仅与边界观测相关,另一部分为对地形测量的响应,为研究地形测量对外部重力场和大地水准面的精化提供新的途径。
The so-called Poisson gravimetry boundary value problems, i. e. Stokes problem and Neumann problem for Poisson equation with respect to the disturbing potential, are formaulated in this paper. For solving these two kinds of problems. firstly, Dirichlet problem for Poisson equation is investigated and its integral solution is written out with respect to second Green identity ; secondly, by introducing two auxilary functions. respectively. Stokes and Neumann problems for Poisson equation nre deduced to Dirichlet problem of sorts, so that their integral solutions are shown in an easy way. The final solutions become a anaddition of two parts. where one is responsive to boundary data, and another to topographies.The present procedure given in this paper opens a new way to study of fining the geoid by using topographies.
出处
《武汉测绘科技大学学报》
CSCD
1999年第1期45-49,共5页
Geomatics and Information Science of Wuhan University
基金
国家自然科学基金!49274192