期刊文献+

排水管道视觉检测成像技术 被引量:2

Visual detection imaging technology for drainpipe
下载PDF
导出
摘要 针对排水管道视觉检测的研究现状,利用计算机视觉理论,提出一种排水管道侧壁视觉检测三维成像方法.基于排水管道侧壁成像原理,采用Harris角点提取算子进行特征点提取,并利用NCC算法对提取的特征点进行匹配.通过研究基于随机抽样一致性算法(RANSAC)中的预检验快速随机抽样一致性算法(PERANSAC),应用该算法对参数进行预检验,在保证置信度一致的前提下,减少了参与检验的模型参数数量,提高了计算效率.实验结果表明,该方法实现了排水管道侧壁相关图片的特征点提取、匹配和基础矩阵的估计,并得到了三维成像结果. For the current status of visual detection of drainpipe,a 3D imaging method concerning the visual detection of drainpipe profile was proposed based on computer vision theory.Harris corner extracting operator was used to extract the characteristic points based on the imaging principle of drainpipe profile,and the NCC algorithm was used to match the extracted characteristic points.The parameters evaluation random sampling consensus(PERANSAC) algorithm based on the random sampling consensus algorithm(RANSAC) was discussed.The algorithm was applied to preview the parameters.Thus,the quantity of model parameters in the detection gets reduced and the calculation efficiency gets increased in the condition of guaranteeing the confidence.The experimental results reveal that with the present technology,the extraction and matching of characteristic points as well as the estimating of fundamental matrix for the related image of drainpipe profile are realized,and the 3D imaging results are attained.
出处 《沈阳工业大学学报》 EI CAS 2010年第2期177-181,共5页 Journal of Shenyang University of Technology
基金 国家自然科学基金仪表专项基金资助项目(60927004)
关键词 排水管道 角点检测 相关算法 快速预检验 三维成像 视觉检测 随机抽样 模型参数 drainpipe corner detection related algorithm PERANSAC 3D imaging visual detection random sampling model parameter
  • 相关文献

参考文献6

二级参考文献29

  • 1朱如军,孙先仿.一种改进的角点探测方法[J].计算机应用与软件,2005,22(1):105-106. 被引量:15
  • 2R Hartley,A Zisserman.Multiple view geometry in computer vision [M].Cambridge University Press,2000. 被引量:1
  • 3Z Zhang,R Deriche,O Faugeras.A robust technique for matching two uncalibrated images trought the unknown epipolar geometry [R].Report of research.France:INRIA,1994,2273. 被引量:1
  • 4C Harris,M Stephens.A combined corner and edge detector [C]//Proc.of 4th Alvey Vision Conf.Manchester.England.Manchester University Press,1988.189-192. 被引量:1
  • 5M Fischler,R Bolles.Random sample consensus:a paradign for model fitting with application to image analysis and automated cartography [J].Communications of the ACM,1981.24(6):381-395. 被引量:1
  • 6Q T Luong,R Deriche,O Faugeras.On determining the fundamental matrix:analysis of different methods and experimental results [R].Report of research.France:INRIA,1993,1894. 被引量:1
  • 7Brandt S. Maximum likelihood robust regression with known and unknown residual models. In: Proc. of the ECCV 2002. 2002.97-102. 被引量:1
  • 8Murray PTD. The development and comparison of robust methods for estimating the fundamental matrix. Int'l Journal of Computer Vision, 1996. 1-33. 被引量:1
  • 9Zhang ZY. Determining the epipolar geometry and its uncertainty: A review. Int'l Journal of Computer Vision, 1998,27(2):161-195. 被引量:1
  • 10Fischler MA, Bolles RC. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. CACM, 1981,24(6):381-395. 被引量:1

共引文献180

同被引文献12

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部