期刊文献+

信阳毛尖茶品质等级的电子鼻检测 被引量:9

Detection of Xinyang Maojian Tea Quality Grade by Electronic Nose
下载PDF
导出
摘要 采用由6个金属氧化物气敏传感器组成阵列的电子鼻对2个等级的信阳毛尖茶进行检测,并通过主成分分析(PCA)、判别分析(LDA)和BP神经网络对数据进行分析和识别。PCA和LDA结果显示,可以将2个等级的茶叶完全区分开。采用3层BP神经网络对数据矩阵进行茶叶等级的定量预测,预测结果平均相对误差为1.16,最大相对误差为13.32。研究结果表明,供试气敏传感器阵列对信阳毛尖茶等级的检测具有很高的定量分析精度。 Xingyang Maojian tea grade were measured by the gas sensor s array which was composed of six metal oxide semiconductor gas sensors. Principal component analysis (PCA),lineardiscriminant analysis (LDA) and BP network were used in the data analysis and pattern recognition. The results obtained prove that the electronic nose can discriminate successfully different grade of tea using PCA and LDA analysis. A feed forward artificial neural (BP)network with three layers to predict the tea grade achieving average relative error of 1.16 with max relative error of 13.32. The results show that gas sensor array could predict the tea grade with a high accuracy.
出处 《河南农业科学》 CSCD 北大核心 2010年第4期36-38,共3页 Journal of Henan Agricultural Sciences
基金 河南省教育厅自然科学研究计划项目(2009B210017)
关键词 传感器阵列 信阳毛尖茶 等级 Gas sensor array Xinyang Maojian tea Grade
  • 相关文献

参考文献7

  • 1于慧春,王俊.电子鼻技术在茶叶品质检测中的应用研究[J].传感技术学报,2008,21(5):748-752. 被引量:81
  • 2于慧春,王俊,张红梅,于勇.龙井茶叶品质的电子鼻检测方法[J].农业机械学报,2007,38(7):103-106. 被引量:68
  • 3Yu Huichun,Wang Jun.Discrimination of Longjing green-tea grade by electronic nose[J].Sensors and Actuators B,2007,122:134-140. 被引量:1
  • 4Bhattacharyya Nabarun,Seth Sohan,Tudu Bipan,et al.Detection of optimum fermentation time for black tea manufacturing using electronic nose[J].Sensors and Actuators B,2007,122:627-634. 被引量:1
  • 5Bhattacharyya Nabarun,Seth Sohan,Tudu Bipan,et al.Monitoring of black tea fermentation process using electronic nose[J].Journal of Food Engineering,2007,80:1146-1156. 被引量:1
  • 6Dutta Ritaban,Kashwan K R,Bhuyan M,et al.Electronic nose based tea quality standardization[J].Neural Networks,2003,16:847-853. 被引量:1
  • 7Dutta Ritaban,Hines E L,Gardner J W,et al.Tea quality prediction using a tin oxide-based electronic nose:an artificial intelligence approach[J].Sensors and Actuators B,2003,94:228-237. 被引量:1

二级参考文献22

共引文献132

同被引文献170

引证文献9

二级引证文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部