摘要
本文研究了Finsler流形上的距离函数的Laplacian.利用指标引理和文献[4]中主要方法,获得了Ricci曲率有函数下界的Laplacian比较定理,改进了文献[6]和文献[7]的相关结果.
In this article,we study the Laplacian of distance function.By using the basic index lemma and the key methods of Chen[4],we obtain Laplacian comparison theorem in Finsler manifold under Ricci curvature with function negative lower bound,which respectively improve and generalize the related results of Cheng[6]and P.Li[7]in Riemannian geometry.
出处
《数学杂志》
CSCD
北大核心
2010年第3期388-394,共7页
Journal of Mathematics