期刊文献+

求解混流装配线调度的疫苗共生克隆选择算法 被引量:1

A Vaccine-Symbiosis Clonal Selection Algorithm for Mixed-Model Scheduling on Assembly Lines
下载PDF
导出
摘要 针对混流装配线的多目标调度优化问题,提出了一种疫苗协同进化的多目标免疫克隆选择优化算法.设计了疫苗种群及其相关操作,使其跟抗体种群相互影响并协同进化,提高了算法的性能;针对调度优化问题的离散性,选择同时从抗体的基因型和表现型评价抗体亲和度;依据抗体质量和进化代数,设计了自适应变异率;在每次迭代过程中,通过多次局部寻优加快算法收敛速度.最后通过两组实例仿真,与另3种多目标优化算法进行比较,结果证明该算法可得到更好的计算结果. In order to solve the scheduling optimization problem in mixed-model assembly lines, a multi-objective vaccine eoevolution elonal selection algorithm is proposed, and the vaccine population and the corresponding popu- lation operations are designed to interact and coevolve with the antibody population, thus greatly improving the per- formance of the algorithm. Then, according to the discrete feature of the scheduling optimization problem, the anti- body affinity is evaluated from the phenotype and the genotype. Moreover, according to the antibody quality and the evolutionary generations, the adaptive mutation rate is designed, and multiple local optimizations are executed in each iteration process to improve the convergence rate of the algorithm. The results of two series of experiments show that, as compared with other three multi-objective optimization algorithms, the proposed algorithm is of high efficiency and superiority.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第3期133-137,142,共6页 Journal of South China University of Technology(Natural Science Edition)
基金 霍英东教育基金会青年教师基金资助项目(111056) 江苏省重大科技成果转化专项资金项目(BA2007034) 江苏省高校科技成果产业化推进项目(JH07-005) 教育部"新世纪优秀人才支持计划"资助项目(NCET080703)
关键词 混流装配线 多目标优化 疫苗 协同进化 克隆选择 mixed-model assembly line multi-objective optimization vaccine coevolution clonal selection
  • 相关文献

参考文献11

  • 1Bard J F,Shtub A,Joshi S B.Sequencing mixed-model assembly lines to level parts usage and minimize line length[J].Int J Prod Res,1994,32(1):2431-2454. 被引量:1
  • 2Tavakkoli-Moghaddam R,Rahimi-Vahed A R.Multi-criteria sequencing problem for a mixed-model assembly line in a JIT production system[J].Applied Mathematics and Computation,2006,181(2):1471-1481. 被引量:1
  • 3Hyun C J,Kim Y,Kim Y K.A genetic algorithm for multiple objective sequencing problems in mixed model assembly lines[J].Comput Oper Res,1998,25(7/8):675-690. 被引量:1
  • 4McMullen P R.An efficient frontier approach to addre-ssing JIT sequencing problems with setups via search heuristics[J].Comput Ind Eng,2001,41(3):335-353. 被引量:1
  • 5Mansouri S A.A multi-objective genetic algorithm for mixed-model sequencing on JIT assembly lines[J].Eur J Oper Res,2005,167(3):696-716. 被引量:1
  • 6苏平,于兆勤.基于混合遗传算法的混合装配线排序问题研究[J].计算机集成制造系统,2008,14(5):1001-1007. 被引量:27
  • 7焦李成等著..免疫优化计算学习与识别[M].北京:科学出版社,2006:464.
  • 8Rahimi-Vahed A,Mirzaei A H.A hybrid multi-objective shuffled frog-leaping algorithm for a mixed-model assembly line sequencing problem[J].Computers & Industrial Engineering,2007,53(4):642-666. 被引量:1
  • 9Deb K,Pratap A,Agarwal S,et al.A fast and elitist multiobjective genetic algorithm:NSGA-II[J].IEEE Transaction on evolutionary Computation,2002,6(2):182-197. 被引量:1
  • 10尚荣华,马文萍,焦李成,张伟.用于求解多目标优化问题的克隆选择算法[J].西安电子科技大学学报,2007,34(5):716-721. 被引量:8

二级参考文献19

  • 1Deb K, Pratap A, Agarwal S, et al. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-Ⅱ[J]. IEEE Trans on Evolutionary Computation. 2002, 6(2): 182-197. 被引量:1
  • 2Zitzler E, Laumanns M, Thiele L. SPEA2: Improving the Strength Pareto Evolutionary Algorithm [R]. Zurich: Computer Engineering and Networks Laboratory (TIK), Swiss Federal Inst. Technology (ETH), 2001. 被引量:1
  • 3Jiao Licheng, Gong M G, Shang R H, et al. Clonal Selection with Immune Dominance and Anergy Based Multiobjective Optimization[C]//EMO'05, Berlin: Springer-Verlag, 2005:474-489. 被引量:1
  • 4Zitzler E, Deb K, Thiele L. Comparison of Multiobjective Evolutionary Algorithms: Empirical Results[J]. Evolutionary Computation, 2000, 8(2):173-195. 被引量:1
  • 5Schaffer J D. Multiple Objective Optimization with Vector Ecaluated Genetic Algorithms[D]. Nashville: Vanderbilt University, 1984. 被引量:1
  • 6Fonseca C M, Fleming P J. Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generation[C]//Proceedings of the 5th International conference on Genetic Algorithms. San Mateo: Morgan Kaufmann, 1993: 416-423. 被引量:1
  • 7Srinivas N, Deb K. Multiobjective Optimization Using Nondominated Sorting in Genetic Algorithms[J]. Evolutionary Computation, 1994, 2(3): 221-248. 被引量:1
  • 8Ishibuchi H, Murata T. A Multiobjective Genetic Local Search Algorithm and Its Application to Flowshop Scheduling [J]. IEEE Trans on System, Man and Cybernetics, 1998, 28(3) : 392-403. 被引量:1
  • 9Zitzler E, Thiele L. Multiobjective Evolutionary Algorithms: a Comparative Case Study and the Strength Pareto Approach[J]. IEEE Trans on Evolutionary Computation. 1999, 3(4): 257-271. 被引量:1
  • 10PATRICK R M, GREGORY V F. A heuristic for solving mixed-model line balancing problems with stochastic task durations and parallel stations[J]. International Journal of Production Economics, 1997, 51(3): 177-190. 被引量:1

共引文献33

同被引文献5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部