期刊文献+

自适应克隆抑制人工免疫算法 被引量:4

Adaptive clone and suppression artificial immune algorithm
下载PDF
导出
摘要 分析了传统的人工免疫算法在寻优过程中易陷入局部极值点或过早收敛的原因,对算法进行了改进,提出了一种自适应克隆抑制免疫算法。改进的算法在克隆下一代抗体时,同时考虑了抗体亲和度和浓度两个因素,并给出了一种自适应调节两者关系的算子,兼顾了收敛速度和后代抗体种群多样性两个方面。对改进后的算法进行了分析,给出了数学描述,以便于工程应用。最后,通过典型的算例对提出算法的有效性进行了验证,结果证明,改进后的算法在收敛速度和寻优性能方面均优于传统的人工免疫算法和标准遗传算法。 Analyzed the reasons of the traditional artificial immune algorithm easily falling into local extreme point or premature convergence in the optimization process.This paper put forward a novel artificial immune algorithm,adaptive clone and suppression artificial immune algorithm(ACSAIA).The algorithm took into account two factors of antibody affinity and concentration of antibody,and gave an adaptive operator to adjust them.Comparing with the corresponding evolutionary algorithm,ACSAIA could enhance the diversity of the population,avoid prematurity and solve deceptive problems to some extent.Meanwhile it had high convergence speed.The experiments show the proposed algorithm is superior to the traditional artificial immune algorithm and standard genetic algorithm in convergence speed and optimization performance.
作者 杨福刚
出处 《计算机应用研究》 CSCD 北大核心 2011年第2期481-484,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(60970105) 山东省自然科学基金资助项目(Y2007G22)
关键词 抗体亲和度 抗体浓度 人工免疫算法 antibody affinity antibody concentration artificial immune algorithm(AIA)
  • 相关文献

参考文献9

  • 1闫巧.基于免疫机理的入侵检测系统的数学描述[J].计算机科学,2009,36(6):78-81. 被引量:2
  • 2De CASTRO L N, Von ZUBEN J F. An immunological approach to initialize centers of radial basis function neural networks[C]//Proc of BRAZILIAN V Conference on Neural Networks. Brazil: [s.n.] , 2001:79-84. 被引量:1
  • 3De CASTRO L N, Von ZUBEN F J. The clonal selection algorithm with engineering applications[C]//Proc of GECCO, Workshop on Artificial Immune Systems and Their Applications.2000:36-37. 被引量:1
  • 4De CASTRO L N, Von ZUBEN F J. Artificial immune systems: part I: basic theory and applications[R].1999. 被引量:1
  • 5莫宏伟主编..人工免疫系统原理与应用[M].哈尔滨:哈尔滨工业大学出版社,2003:267.
  • 6FARMER J D, PACKARD N H, PERELSON A S. The immune system, adaptation, and machine learning[J].Physics D,1986,2(1-3):187-204. 被引量:1
  • 7De CASTRO L M, Von ZUBEN F J. Artificial immune systems: part Ⅱ: a survey of applications[R].2000. 被引量:1
  • 8DASGUPTA D. Artificial immune systems and their applications[M].[S.l.] : Springer Verlag Inc,1999:118-231. 被引量:1
  • 9陈国良等编著..遗传算法及其应用[M].北京:人民邮电出版社,1996:433.

二级参考文献5

  • 1闫巧,江勇,吴建平.基于免疫机理的网络入侵检测系统的抗体生成与检测组件[J].计算机学报,2005,28(10):1601-1607. 被引量:18
  • 2Axelsson S. The Base-Rate Fallacy and the Difficulty of Intrusion Detection[J].ACM Transactions on Information and System Security, 2000,3 (3) : 186-205 被引量:1
  • 3Hofmeyr S A. An Interpretative Introduction to the Immune System[M]//I. Cohen, L. Segel, eds. Design Principles for the Immune System and other Distributed Autonomous Systems. Oxford University Press, 2000 被引量:1
  • 4Forrest S, Hofmeyr S, Somayaji A. Computer Immunology[J].Communications of the ACM, 1997,40(10) : 88-96 被引量:1
  • 5Hofmeyr S A. A Immunological Model of Distributed Detection and its Application to Computer Security[D]. Department of Computer Sciences, University of New Mexico, Albuquerque, NM,April 1999. 被引量:1

共引文献1

同被引文献36

引证文献4

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部