期刊文献+

针对不同特征基因挖掘方法的特征基因功能一致性分析 被引量:3

Function Concordance Analysis of Gene Selected by Different Mining Methods
下载PDF
导出
摘要 挖掘特征基因是分析基因表达谱的一项基础工作,但众多的特征基因挖掘方法所挖掘的特征基因集合并不完全一致。本研究试图从生物功能和样本分类能力两个方面,分析比较不同方法所挖掘的特征基因的功能一致性,并对RankGene中的八种不同特征基因挖掘方法以及基于八种方法的集成法进行了功能一致性分析。结果显示:无论是生物功能分析还是样本分类能力分析,二分规则、Gini指数、方差总和三种方法的一致性较高;样本分类能力分析中,各方法所挖掘的特征基因对样本的分类准确率均较高,但不能明确区分方法间样本分类能力的优劣。 Gene mining is the basic work in the gene expression profile analysis.And lots of gene mining methods turned up with a different discriminatory gene list with the ones selected by the existed methods.We can analyze the function concordance of the genes selected by different gene mining methods.The function concordance is not only about the classification of the genes,but also the biological function.In this study,we applied the function concordance analysis on the eight gene mining methods in RankGene,as well as an integrated method based on the result of the former eight methods.The result showed that there was little difference among twoing rule,Gini index and sum of variation on both biological function and classification of selected genes.The concordance of the nine gene mining methods was good in classification,and it was hard to rank the performance of the eight methods by classification,though some methods were not quite concordant in biological function.
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2010年第2期212-219,共8页 Chinese Journal of Biomedical Engineering
基金 国家自然基金资助项目(30871394) 国家高技术研究发展(863)计划(2007AA02Z329) 黑龙江科技攻关(ZJG0501)
关键词 RankGene 生物功能 样本分类能力 基因表达谱 RankGene biological function classification analysis gene expression profile
  • 相关文献

参考文献27

  • 1Li Xia,Rao Shaoqi,Wang Yadong,et al.Gene mining:a novel and powerful ensemble decision approach to hunting for disease genes using microarray expression profiling[J].Nucleic Acids Research,2004,32(9):2685-2694. 被引量:1
  • 2Mills JC,Gordon JI.A new approach for filtering noise from high-density oligonucleotide microarray datasets[J].Nucleic Acids Res,2001,29(15):E72-2. 被引量:1
  • 3Xu Wenlong,Wang Minghui,Zhang Xianghua,et al.SDED:A novel filter method for cancer-related gene selection[J].Bioinformation,2008,2(7):301–303. 被引量:1
  • 4Kohavi R,John GH.Wrappers for feature subset selection[J].Artificial Intelligence,1997,97:273-324. 被引量:1
  • 5Xing EP,Jordan MI,Karp RM.Feature selection for high-dimensional genomic microarray data[A].In:Proceedings of the Eighteenth Internatlonal Conference on Machine Learning[C].Massachusetts:Morgan Kaufmann,2001.601-608. 被引量:1
  • 6Golub TR,Slonim DK,Tamayo P,et al.Molecular classification of cancer:class discovery and class prediction by gene expression monitoring[J].Science,1999,286(5439):531–537. 被引量:1
  • 7Liu Huan,Setiono R.Chi2:feature selection and discretization of numeric attributes[A].In:Proceedings of the Seventh International Conference on Tools with Artificial Intelligence[C].Herndon:IEEE Computer Society,1995.388–391. 被引量:1
  • 8Kononenko I.Estimating attributes:analysis and extensions of relief[A].In:Proceedings of the 7th European Conference on Machin Learning[C].Berlin:Springer Verlag,1994.171-182. 被引量:1
  • 9Hall M.Correlation-based feature selection for machine learning[D].Hamilton:University of Waikato,1998. 被引量:1
  • 10Blum A,Langley P.Selection of relevant features and examples in machie learning[J].Artificial Intelligence,1997,97:245-271. 被引量:1

同被引文献21

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部