期刊文献+

季节型增长趋势电力消费预测研究:基于中国的实证分析 被引量:6

Research on Seasonal Increasing Electric Energy Demand Forecasting:A Case in China
原文传递
导出
摘要 以我国月电力消费量为例,研究了季节型增长趋势中长期电力指标的预测问题。提出采用离散小波变换对季节型增长趋势历史数据进行分解并对各频率分解系数分别进行重构,在剔除随机性波动后,将长期增长趋势及各规律性波动趋势通过RBF网络进行趋势外推预测,进而通过对不同趋势预测结果进行组合得到电力消费量的预测值。实证分析表明,经过离散小波分解处理后,RBF网络样本的规律性得到增强,其在有效模拟非线性变化规律的同时,泛化能力得以提高,因而具有较好的预测精度。 Based on the historical data of Chinese monthly electric energy demand,this paper researches the forecasting methods of seasonal increasing mid-long term electric indexes.It adopts discrete wavelet transform to decompose the sample series and reconstruct the decomposed results separately.After discarding the stochastic series,the long term increasing and fluctuant vectors are extended by RBF neural network.Adding the extended values together,it gets the forecasting results of electric energy demand.Empirical results show that after the decomposition by discrete wavelet transform,fluctuant trends of sample for RBF neural network are simplified.When it simulates the nonlinear trends,the generalization capability of RBF neural network is improved and the forecasting results are of good performance.
作者 牛东晓 孟明
出处 《中国管理科学》 CSSCI 北大核心 2010年第2期108-112,共5页 Chinese Journal of Management Science
基金 国家自然科学基金资助项目(70671039) 华北电力大学青年教师科研基金
关键词 季节型增长趋势 离散小波变换 RBF网络 泛化能力 seasonal increasing trend discrete wavelet transform RBF neural network generalization capability
  • 相关文献

参考文献13

  • 1邢棉.季节性预测的组合灰色神经网络模型研究[J].系统工程理论与实践,2001,21(1):31-35. 被引量:40
  • 2牛东晓,陈志业,邢棉,谢宏.具有二重趋势性的季节型电力负荷预测组合优化灰色神经网络模型[J].中国电机工程学报,2002,22(1):29-32. 被引量:99
  • 3Abdel--Aal, R. E. , AI--Garni, A. E.. Forecasting monthly electric energy consumption in Eastern Saudi Arabia using univariate time-series analysis [J]. Energy, 1997,22(11):1059-69. 被引量:1
  • 4Saab, S., Badr, E., Nasr, G.. Univariate modeling and forecasting of energy consumption: The case of electricity in Lebanon [J]. Energy, 2001,26(1):1- 14. 被引量:1
  • 5Jia, N. X. , Yokoyama, R. , Zhou, Y.C. , Gao, Z.Y.. A flexible long--term load forecasting approach based on new dynamic simulation theory - GSIM [J]. International Journal of Electrical Power and Energy Systerns, 2001,(7): 549-556. 被引量:1
  • 6Zhao, S. , Wei, G. W.. Jump process for the trend estimation of time series[J]. Computational Statistics and Data Analysis, 2003,(1-2): 219-241. 被引量:1
  • 7Gonzalez--Romera, E., Jaramillo--Moran, M. A., Carmona--Fernandez, D.. Forecasting of the electric energy demand trend and monthly fluctuation with neu- ral networks [J]. Computers and Industrial Engineering, 2007,(3): 336-343. 被引量:1
  • 8Gonzalez-- Romera, E. , Jaramillo -- Moran, M. A. , Carmona--Ferndndez, D.. Monthly electric energy demand forecasting with neural networks and Fourier series [J]. Energy Conversion and Management, 2008, (11) : 3135-3142. 被引量:1
  • 9Gonzalez- Romera, E. , Jaramillo- Moran, M. A. ,Carmona--Fernandez, D.. Monthly electric energy de- mand forecasting based on trend extraction [J]. IEEE Transactions on Power Systems, 2006, (4): 1946 -- 1953. 被引量:1
  • 10Mix, D. F. , Olejniezak, D.J.. Elements of Waelets for Engineers and Scientists [M]. Wiley- interscience, 2003. 被引量:1

二级参考文献20

共引文献159

同被引文献87

引证文献6

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部