期刊文献+

我国工业增加值季节波动非线性研究——基于SEATV-STAR模型 被引量:8

Research on the Nonlinearity of Seasonal Fluctuations of China's Industrial Added Value——Based on SEATV-STAR model
原文传递
导出
摘要 多数宏观经济变量时间序列有季节波动,如果季节波动是非线性的,采用经季节调整过的数据或传统季节模型等线性处理季节波动的方法可能就不再适用。本文基于季节时变平滑转换自回归(SEATV-STAR)模型,运用"特殊到一般"的非线性检验策略对我国工业增加值季度增长率季节波动进行研究。结果表明:(1)工业增加值的季节波动兼有结构时变和非线性改变,工业增加值的周期波动是线性的。(2)技术进步、体制变迁等因素使得工业增加值季节波动发生连续的结构时变,它们是季节波动变化的主要影响因素。(3)工业增加值周期波动对其季节波动有非对称影响;在工业增加值的波峰阶段,其季节波幅会减小,且1、2季度工业增长率有明显提高。 Most of the macroeconomic time series have seasonal fluctuations and if the seasonal fluctuations are truly nonlinear, then the methods of seasonal adjusted or traditional season models using linear methods to deal with seasonal fluctuations are may be improper. Based on SEATV-STAR model, "from the special to general" testing strategies ware applied to investigate the seasonal fluctuation of China's industrial added value and the results are as follows: seasonal fluctuation of industrial added value has the properties of structural time-varying and nonlinear change, while the periodic fluctuation is linear. The factors such as technological progress and economic system transition are the main influence factors to cause sea sonal fluetuation's continuous structural change. Besides, cyclical fluctuation of industrial added value results in seasonal fluctuation's asymmetric change. In the peak periods of industrial added value, seasonal amplitude reduce while quarter 1th&2nd's growth speed improve significantly.
出处 《中国管理科学》 CSSCI 北大核心 2016年第4期10-18,共9页 Chinese Journal of Management Science
基金 国家社会科学基金资助重点项目(15ATJ003) 国家自然科学基金资助项目(71162017)
关键词 SEATV-STAR模型 平滑转换 结构时变 季节波动变化 SEATV-STAR model smooth transition structural time-varying seasonal fluctuation change
  • 相关文献

参考文献26

  • 1Lundbergh S, Ter/isvirta T, van Dijk D. Time-varying smooth transition autoregressive models[J]. Journal of Business and Economic Statistics, 2003,21 ( 1 ) : 104 -121. 被引量:1
  • 2杜勇宏,王健著..季节时间序列理论与应用[M].天津:南开大学出版社,2008:226.
  • 3Burns A F, Mitchell W C. Measuring business cycles FR~. Working Paper,National Bureau of Economic Re- search, 1946. 被引量:1
  • 4Miron J A, Beaulieu J J. What have macroeconomists learned about business cycles from the study of seasonal cycles? [J]. The Review of Economics and Statistics, 1996,(1) :54-66. 被引量:1
  • 5Miron J A. The economics of seasonal cycles[M~ . MA: MIT press. Cambridge, Massachusetts London, Eng- land, 1996. 被引量:1
  • 6Carpenter R E, Levy D. Seasonal cycles, business cy- cles, and the comovement of inventory investment and output[J]. Journal of Money, Credit and Banking, 1998,3(3) :331-346. 被引量:1
  • 7Hylleberg S, Engle R F, Granger C W J,et al. Seasonal integration and cointegratiun[J]. Journal of Economet- rics, 1990,44(1) :215-238. 被引量:1
  • 8Beaulieu J J, Miron J A. Seasonal unit roots in aggregate U.S. dataER~. Technical Paper, NBER,1992. 被引量:1
  • 9Bollerslev Tim, Eric G. Periodic autoregressive condi- tional heterosedasticity[J]. American Statistical Associ- ation, 1996, 14(2):139-151. 被引量:1
  • 10Franses P H, Bruin P de,van Dijk D. Seasonal smooth transition autoregression]-J~. Econometric Institute Re- port, 2000,(6):1-34. 被引量:1

二级参考文献76

共引文献170

同被引文献88

引证文献8

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部