期刊文献+

赖氨酸发酵过程关键参数的模糊神经网络逆软测量研究 被引量:10

Research of soft sensor based on fuzzy neural network inverse system for lysine fermentation process
下载PDF
导出
摘要 针对微生物发酵关键生物量参数(基质浓度、菌丝浓度和产物浓度)难以直接测量的问题,以赖氨酸发酵过程为研究对象,采用基于"虚拟子系统"的模糊神经网络逆系统软测量方法对关键生物量参数进行在线估计。假定在发酵过程内部存在一个以不可直接测量参数为输入,直接可测参数为输出的"虚拟子系统",并建立"虚拟子系统"的数学模型。再构造"虚拟子系统"的模糊神经网络逆系统,将逆系统串接在"虚拟子系统"后构成复合伪线性系统,得到动态软测量模型,实现不可直接测量参数的在线估计。实验结果表明:该方法能很好地实时估算赖氨酸发酵过程关键参数,为进行赖氨酸发酵过程补料优化控制打下良好的基础。 In order to overcome the difficulties of crucial biochemical variable on-line measurement in fermentation process, a soft sensor method based on Fuzzy Neural Network (FNN) inversion of the "subsystem" is proposed to estimate the crucial process variables in lysine fermentation process. It is supposed that there exists a "virtual sub- system" with direct-immeasurable variables as its inputs and direct-measurable variables as its outputs. Based on this supposition, the mathematics model of the "subsystem" is established. And the corresponding inversion of the "virtual subsystem" is constructed using FNN and is connected in series after the "virtual subsystem", so a pseudo-linear system is established, which can be regarded as the desired dynamic soft sensor model, because its outputs are just the direct-immeasurable variables. Experiment results show that this method can on-line estimate the direct-immeasurable variables and lays a good foundation for the fed-batch optimal control of lysine fermentation process.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2010年第4期862-867,共6页 Chinese Journal of Scientific Instrument
基金 国家高技术"863"计划基金(2007AA04Z179 2007AA091602) 高等学校博士学科点专项科研基金(20070299010)资助项目
关键词 软测量 模糊神经网络 逆系统 虚拟子系统 赖氨酸 发酵过程 soft sensor fuzzy neural network inverse system virtual subsystem lysine fermentation process
  • 相关文献

参考文献15

二级参考文献41

共引文献114

同被引文献108

引证文献10

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部