期刊文献+

生物发酵过程的自适应补偿控制方法

Adaptive compensation control method in a fermentation process
原文传递
导出
摘要 针对多变量的生物发酵系统,为提高神经网络逆解耦控制性能,提出一种基于神经网络逆解耦的自适应补偿控制方法。首先,基于逆系统理论构造神经网络近似被控系统的逆系统,并将神经网络逆系统与被控系统串联构成伪线性复合系统;然后,对解耦后的伪线性复合系统设计自适应补偿控制器,实现系统的跟踪控制;最后,基于Lyapunov稳定性理论设计控制器参数的自适应律,保证了控制系统的稳定性。将提出的控制方法应用于生物发酵过程的菌丝浓度、基质浓度的解耦控制,数值仿真结果表明,所提出的控制方法较能有效提高普通的神经网络逆系统解耦控制性能。 To improve the performance of neural network inverse deeoupling control, adaptive compensation control method is proposed for multi-variable fermentation system. First, according to inverse system theory, neural network is constructed to approximate the inverse system of the original system. And a pseudo-linear composite system can be gotten by cascading neural network inverse system and the original system; then, adaptive compensation controller is designed for the pseudo-linear composite system to achieve the control goal; last, based on Lyapunov stability theory, the parameter adaptive law is designed to assure that the system is stable. The proposed control method is applied in a fermentation process to achieve the deeoupling control of mycelia concentration and substrate concentration. Numerical simulations show that the proposed control method has the higher performance comparing with the general neural network inverse decoupling control method.
出处 《计算机与应用化学》 CAS CSCD 北大核心 2013年第10期1188-1192,共5页 Computers and Applied Chemistry
基金 国家中小型创新基金项目(12C26213202207) 江苏高校优势学科建设工程资助项目([2011]6)
关键词 神经网络逆系统 伪线性复合系统 动态误差 自适应补偿控制 neural network inverse system pseudo-linear composite system dynamic error adaptive compensation
  • 相关文献

参考文献6

二级参考文献42

  • 1张友旺,桂卫华,赵泉明.基于动态递归模糊神经网络的自适应电液位置跟踪系统[J].控制理论与应用,2005,22(4):551-556. 被引量:15
  • 2刘国海,孙玉坤,全力,刘贤兴,刘星桥.基于神经网络逆系统的发酵过程多变量解耦控制[J].仪器仪表学报,2006,27(3):245-248. 被引量:14
  • 3王诗宓.多变量控制系统的分析和设计[M].北京:中国电力出版社,1994.219-278. 被引量:2
  • 4CHEN Jian. LI Yin. Fermentation Process Optimization Theory and Practice[M]. Beijing: Chemical Industry Publisher, 2002. 被引量:1
  • 5LU Zhigang, WUShichang. NonlinearAdaptivelnverseControland Application[M]. Beijing: National Defense Industry Press, 2003. 被引量:1
  • 6MASTOROCOSTAS P A, THEOCHARIS J B. A recurrent fuzzyneural model for dynamic system identification[J]. IEEE Transactions on System, 2002, 32(2): 176 - 190. 被引量:1
  • 7YU W, LI X O. Fuzzy identification using fuzzy neural network with stable learning algorithms[J]. IEEE Transactions on Fuzzy Systems, 2004, 12(3): 410 - 420. 被引量:1
  • 8LEE S J, OUYANG C S. A neuro-fuzzy system modeling with self- constructing rule generation and hybrid SVD-based learning[J]. IEEE Translations on Fuzzy Systems. 2003, 11(3): 341 - 353. 被引量:1
  • 9JIA Li. Research on neuro-fuzzy system and its application in modeling and control[D]. Shanghai: East China University of Science and Technology, 2002. 被引量:1
  • 10LI Shiyong. Fuzzy Control Neurocontrol and Intelligent Cybernetics[M]. Harbin: Harbin Institute of Technolgy Press, 2006. 被引量:1

共引文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部