期刊文献+

基于Renyi熵的LS-SVM财务困境预测模型 被引量:1

Financial distressof prediction model of least squares support vector machine based on renyi-entropy
下载PDF
导出
摘要 为了提高企业财务困境预测的正确率,减少训练模型的样本数和训练时间,在传统支持向量机预测模型的基础上,将Renyi熵和最小二乘支持向量机算法应用于财务困境预测,提出了一种基于Renyi熵的最小二乘支持向量机预测模型。独立推导出了适合财务困境预测这一离散序列的熵以及支持向量机核函数的表达式,同时,给出了这一改进算法的实现步骤。实验结果表明,该算法无论是训练样本的数量还是训练时间,都显著优于传统的最小二乘支持向量机以及标准支持向量机预测模型。 In order to improve the correct rate of enterprise’s financial distress prediction and reduce the sample number and training time, renyi-entropy and least squares support vector machine (LS-SVM) is applied to the field of financial distress prediction on the basis of the traditional support vector machine prediction model and advances a kind of prediction model which is based on Renyi-entropy and LS-SVM. The paper also independently derives the entropy fit for the financial distress prediction which is in discrete sequence, as well as the expression of support vector machine kernel function. Besides, it also presents the procedures of carrying out the improved algorithm. The experimental results show that the improved algorithm is significantly superior to the traditional LS-SVM as well as the standard support vector machine prediction model, regardless of the training samples number or computing time.
作者 赵冠华
出处 《计算机工程与设计》 CSCD 北大核心 2010年第8期1806-1808,1812,共4页 Computer Engineering and Design
基金 国家自然科学基金项目(70840018) 山东省科技攻关计划基金项目(2008GG30009005) 山东省软科学研究计划基金项目(2008RKA223)
关键词 RENYI熵 最小二乘支持向量机 支持向量机 因子分析 财务困境预测 renyi-entropy least squares support vector machine support vector machine gene analysis financial distress prediction
  • 相关文献

参考文献11

二级参考文献33

  • 1[1]Altman E I Edward. Financial ratios, discriminant analysis and the predication of corporate bankruptcy [J]. The Journal of Finance, 1968, 23 : 589- 609. 被引量:1
  • 2[2]Eisenbeis R A. Pitfalls in the application discriminant analysis in business and economics [J]. TheJournal of Finance. 1997,32 : 875- 900. 被引量:1
  • 3[3]Eisenbeis R A. Pitfalls in the application of neural networks: the case of bank failure predictions [J]. Management Sciences, 1992,38(1):926-947. 被引量:1
  • 4[4]Altman E I, Giancarlo Marco, Franco Varetto. Cor porate distress diagnosis: comparisons using linear discriminate analysis and neural networks[J]. Journal of Banking and Finance, 1994, (18) : 505- 529. 被引量:1
  • 5[5]Winkler R L. Combing forecasts: a philosophical ba sis and some current issues[J]. Forecasting, 1985,5 : 605-609. 被引量:1
  • 6[10]Graner C W J. Forecasting economic time series [M]. 2nded. Orland :Academic Press, 1986. 被引量:1
  • 7张学工.统计学习理论的本质[M].北京:清华大学出版社,2000.. 被引量:54
  • 8Bequette B W.Nonlinear control of chemical process:a review[J].Industry&Engineering Chemistry Research,1991,30(4):1391~1413. 被引量:1
  • 9Evelio H,Yaman A.Control of nonlinear systems using polynomial ARMA models[J].AIChE Journal,1993,39(3):446~460. 被引量:1
  • 10Maner R B, Doyle Ⅲ F J. Polymerization reactor control using autoregressive-plus volterra-based MPC [ J]. AIChE Joumal, 1997,43(7) :1763 - 1784. 被引量:1

共引文献127

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部