期刊文献+

基于二次Renyi熵的非迭代最小二乘支持向量机预测模型 被引量:4

Prediction model of noniterative least squares SVM based on quadratic Renyi-entropy
下载PDF
导出
摘要 将二次Renyi熵应用于企业财务困境预测,提出了一种基于二次Renyi熵的最小二乘支持向量机(LS-SVM)模型。通过将该模型与传统的LS-SVM模型、标准SVM模型以及与二项Logistic回归模型、BP神经网络(BP-ANN)的分析比较,表明了该模型无论是训练样本的数量还是运算时间,都显著优于其他模型,且有较好的稳定性。实证分析表明,将二次Renyi熵引入企业财务困境预测领域是成功的,同时,通过对原始输入变量进行显著性检验、因子分析处理,减少了输入变量个数,预测正确率达到了88%,说明因子分析法是有效的。 A learning algorithm of noniterative Least Squares Support Vector Machine (LS-SVM) based on quadratic Renyi-entropy was propused in the article by using quadratic Renyi-entropy in financial distress prediction. By comparing the model of LS-SVM based on quadratic Renyi-entropy with traditional LS-SVM, standard SVM, binomial Logistic regression model and Back Propagation Artificial Neural Network (BP-ANN), this paper concluded that either the number of training samples or the computing time, the model of noniterative I,S-SVM based on quadratic Renyi-entropy is remarkably better than the others, as well as the stability. Indicated by demonstration analysis, the model of noniterative LS-SVM based on quadratic Renyi-entropy is successful in financial distress prediction. Meanwhile, although the number of input variable has been reduced by conspicuity test and gene analysis, the accuracy rate of the prognosis still reached 88%. In a word, the factor analysis method has been successfully proved in the article.
作者 赵冠华
出处 《计算机应用》 CSCD 北大核心 2009年第10期2751-2754,2757,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(70840018) 山东省科技攻关计划资助项目(2008GG30009005) 山东省软科学研究计划资助项目(2008RKA223)
关键词 二次Renyi熵 最小二乘支持向量机 标准支持向量机 非迭代 因子分析 财务困境预测 quadratic Renyi-entropy Least Squares Support Vector Machine (LS-SVM) standard SVM noniterative factor analysis financial distress prediction
  • 相关文献

参考文献15

  • 1COMES C, VAPNIK V N. Support-vector networks[ J]. Machine Learning, 1995, 20(3) : 273 -297. 被引量:1
  • 2BORER B, GUYON I, VAPNIK V N. A training algorithm for optimal margin classifiers[ C]// Proceedings of the Fifth Annual Workshop on Computational Learning Theory. New York: ACM Press, 1992:144 - 152. 被引量:1
  • 3SCHOLKOPF B, BURGER C, VAPNIK V N. Extracting support data for a given task[ C]// Proceedings of First International Conference on Knowledge Discovery and DataMining, [ S. l. ]: AAAI Press, 1995: 262 - 267. 被引量:1
  • 4OSUNA E, FREUND R, GIROSI F. An improved training algorithm for support vector machines[ C]// Proceedings of the 1997 IEEE Workshop on Neural Networks and Signal Processing. Amelia Island: IEEE Press, 1997:276 -285. 被引量:1
  • 5PLATT J C. Fast training of support vector machines using sequential minimal optimization[ C]// Advances in Kernel Methods: Support Vector Learning. Cambridge: MIT Press, 1999:185 -208. 被引量:1
  • 6SUYKENS J A K, VANDEWALLE J. Least squares support vector machine classifiers[ J]. Neural Processing Letter, 1999, 9 (3) : 293 -300. 被引量:1
  • 7SUYKENS J A K, LUKAS L, WANDEWALLE J. Sparse approximation using least squares support vector machines[ C]// ISCAS: Proceeding of the IEEE International Symposium on Circuits and Systems. [ S.l. ] : IEEE Press, 2000:757 -760. 被引量:1
  • 8LI YONG-MIN, GONG SHAO-GANG, SHERRAH J, et al. Support vector machine based multi-view face detection and recognition [ J]. Image and Vision Computing, 2004, 22(5) : 413 - 427. 被引量:1
  • 9ROMDHANI S, TORN P, SCHOLKOPF B, et al. Efficient face detection by a cascaded support-vector machine expansion[ J]. Royal Society of London Series A-Mathematical Physical and Engineering Sciences, 2004, 13(4) : 3283 -3297. 被引量:1
  • 10SHIH P C, LIU C J. Face detection using discriminating feature analysis and support vector machine[ J]. Pattern Recognition, 2006, 39(2) : 260 -276. 被引量:1

同被引文献44

  • 1谢纪刚,裘正定,韩彦俊,莫莉.上市公司财务困境预测模型比较研究[J].系统工程理论与实践,2005,25(9):29-35. 被引量:14
  • 2黄开明,尹泽勇,黄金泉.参数限制对涡轴发动机过渡态控制的影响[J].航空动力学报,2006,21(2):432-436. 被引量:10
  • 3赵琳,樊丁,陕薇薇.航空发动机过渡态全局寻优控制方法研究[J].航空动力学报,2007,22(7):1200-1203. 被引量:9
  • 4Beaver W.H.Financial Ratios as Predictoss of Failure[J].Journal of Accounting Research,1966,4:71-111. 被引量:1
  • 5E.I.Altman.Financial Ratios Discriminant Analysis and the Prediction of Corporate Bankruptcy[J],Journal of Finance.1968,(4):589-609. 被引量:1
  • 6Ohlson J.S.Financial Ratios and the Prediction of Bankruptcy[J].Journal of Accounting Research,1980,19(Spring):109-131. 被引量:1
  • 7P.C.Pendharkar.A Threshold Varying Artificial Neural Network Approach for Classification and Its Application to Bankruptcy Prediction Problem[J].Computets&Operations R.esearch,2005,32:2561-2582. 被引量:1
  • 8Beaver W. Financial Ratios as Predictors of Failure, Empirical Research in Accounting: Selected Studies[J]. Journal of Accounting Research, 1966,4(supplement):71-111. 被引量:1
  • 9Deakin E. A Discriminant Analysis of Predictors of Business Failure[J]. Journal of Accounting Research, 1972,10(1):167-179. 被引量:1
  • 10Morris S A. Internal Effects of Stakeholder Management Devices[J]. Journal of Business Ethics, 1997,16(4):413-424. 被引量:1

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部