期刊文献+

多传感器协同辨识自校正加权观测融合Kalman滤波器 被引量:3

Self-tuning Weighted Measurement Fusion Kalman Filter with Cooperating Identification for Multisensor System
下载PDF
导出
摘要 对于带未知噪声统计的多传感器系统,利用最小二乘法将观测方程统一处理,形成新的跟踪系统,处理后的观测结果之差可以产生多组新的白噪声序列,利用各组白噪声的相关函数阵解矩阵方程组,可解得各传感器观测噪声方差Ri。通过状态方程和观测方程以及观测噪声估值,利用相关函数,可求得ΓQwΓT的估计,进而得到自校正加权观测融合Kalman滤波器。一个带有3传感器目标跟踪系统的仿真例子说明了其收敛速度快,估计精确等特点。 For the multisensor system with unknown noise statistics,the measurement function can be dealt with in a unified way to form a new tracking system by least square method. The differences between these measurements that dealt with many group of new white noise sequences. Using the correlated functions matrix of these sequences,the measurement noise variances Ri of the subsystems can be estimated. And the estimates of ΓQwΓT can be obtained from the state functions,the measurement function and the estimates of the measurements noise variances by correlated functions matrix and then the self-tuning weighted measurement fusion Kalman filter is obtained. A simulation example for a tracking system with 3 sensors shows its fast convergence and exactness.
作者 叶秀芬 郝钢
出处 《宇航学报》 EI CAS CSCD 北大核心 2010年第3期918-924,共7页 Journal of Astronautics
关键词 噪声统计估计 辨识 KALMAN滤波 加权观测融合 Noise statistics estimation Identification Kalman filter Weighted measurement fusion
  • 相关文献

参考文献7

二级参考文献13

  • 1邓自立,郝钢,吴孝慧.两种加权观测融合算法的全局最优性和完全功能等价性[J].科学技术与工程,2005,5(13):860-865. 被引量:14
  • 2[2]Gan Q, Harris C J. Comparison of two measurement fusion methods for Kalman filter-besed multisensor data fusion. IEEE Trans Aerospace and Electronic Systems, 2001; 37 (1) : 273-280 被引量:1
  • 3[5]Kailath T. Sayed A H, Hassibi B. Linear estimation. Upper Saddle River, New Jersey: Prentice-Hall, 2000 被引量:1
  • 4[1]Kailath T,Sayed A H,Hassibi B.Linear estimation.Upper Saddle River,New Jersey:Prentice-Hall,Inc.,2000 被引量:1
  • 5[3]Lee T T.A direct approach to identify the noise covariances of Kalman filtering.IEEE Transactions Automatic Control,1980;25:841-842 被引量:1
  • 6[4]Deng Z L,Zhang H S,Liu S J,Zhou L.Optimal and self-tuning white noise estimators with applicantions to deconvolution and filtering problems.Automatica,1996;32(2):199-216 被引量:1
  • 7[5]Ljung L.System identification:theory for the user,second edition.Prentice-Hall PTR,1999 被引量:1
  • 8Kailath T,Sayed A H,and Hassibi B.Linear Estimation.Upper Saddle River,New Jersey:Prentice-Hall,2000:78-116. 被引量:1
  • 9Sun Shuli and Deng Zili.Multi-sensor optimal information fusion Kalman filter.Automatica,2004,40(6):1017-1023. 被引量:1
  • 10Deng Zili,Gao Yuan,and Mao Lin,et al..New approach to information fusion steady-state Kalman filtering.Automatica,2005,41(10):1695-1707. 被引量:1

共引文献97

同被引文献24

  • 1潘泉,杨峰,叶亮,梁彦,程咏梅.一类非线性滤波器——UKF综述[J].控制与决策,2005,20(5):481-489. 被引量:231
  • 2杨小军,潘泉,王睿,张洪才.粒子滤波进展与展望[J].控制理论与应用,2006,23(2):261-267. 被引量:74
  • 3邓自立.两种最优观测融合方法的功能等价性[J].控制理论与应用,2006,23(2):319-323. 被引量:13
  • 4LI X R, ZHAO Z L. Relative error measures for evaluation of estima- tion algorithms[C]//The 7th International Conference on Information Fusion. New York: IEEE, 2005:211 -218. 被引量:1
  • 5JULIER S J, LrHLMANN J K, DURRANT-WHYTE H E A new ap- proach for filtering nonlinear system[C]//Proceedings of the Ameri- can Control Conference. New York: IEEE, 1995:1628 - 1632. 被引量:1
  • 6JAZWINSKI A H. Stochastic Processes and Filtering Theory[M] San Diego, CA: Academic, 1970. 被引量:1
  • 7SORENSON H W. Kalman Filtering Piscataway, NJ: IEEE, 1985. 被引量:1
  • 8JULIER S J, UHLMANN J K. Unscented filter and nonlinear estima- tion[J]. Proceedings of the IEEE, 2004, 92(3): 401 -402. 被引量:1
  • 9ARULAMPALAM S, MASKELL S, GORDON N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian track- ing[J]. IEEE Transactions on Signal Processing, 2002, 50(2): 174 - 188. 被引量:1
  • 10JULIER S J. Estimating and exploiting the degree of independent in- formation in distributed data fusion[C]//The 12th International Con- ference on Information Fusion. Piscataway, NJ: IEEE, 2009:772 - 779. 被引量:1

引证文献3

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部