期刊文献+

球磨法改善电学接触增强碳纳米管场发射性能 被引量:4

Improvement Contact Resistance and Enhancement of Carbon Nanotube Electron Field Emission by Ball Milling Process
下载PDF
导出
摘要 本文采用CNT与纳米银颗粒混合球磨的方法,改善了CNT与衬底电极的电学接触性能。并比较了球磨和电泳两种方法分别获得的CNT的场发射特性,结果表明:采用球磨法所获得的CNT场发射阴极的场发射性能远远优于电泳法。在球磨过程中,由于钢球、纳米银颗粒、CNT和衬底之间互相挤压,使CNT和银颗粒及衬底之间形成紧密牢固的接触,减少了界面的接触电阻,从而大大改善了界面的电学接触性能。而电泳沉积的CNT和衬底之间基本上是简单的物理附着力,接触电阻很大,而且由于这种作用力相对较弱,往往会导致发射体本身不稳定。球磨提供了一种改善电学接触的简单有效方法,并且适合于大规模生产CNT场发射冷阴极。 The field emission properties of carbon nanotubes (CNT) of ball milling are much better than that of electrophoresis deposition because fine electrical contact between CNT and substrate and strong adhesion between them were easily obtained by ball milling.CNT roots were embedded into the Ag nano-particles by the speed ball press.CNT roots were fixed on the ITO substrate by Ag nano-particles,and the sticking tips could act as the electron emission resources.CNT attached by electrophoresis alone have the weak adhesion mainly due to the van der Waals' force at the interface between CNT and the substrate which resulted in high contact resistance.The ball milling method is short process time,simple apparatus,low cost,and suitable for production of large scale CNT-based field emission cold cathode.
出处 《人工晶体学报》 EI CAS CSCD 北大核心 2010年第1期44-47,56,共5页 Journal of Synthetic Crystals
基金 国家自然科学基金(No.90406024 60571004)
关键词 碳纳米管 场发射 球磨 电泳 接触电阻 carbon nanotubes field emission ball milling electrophoresis deposition contact resistance
  • 相关文献

参考文献15

  • 1孙晓刚,程利,杜国平.阵列式碳纳米管雷达波吸收性能研究[J].人工晶体学报,2009,38(5):1114-1118. 被引量:14
  • 2Saito R,Fujita M,Dresselhaus G,et al.Electronic Structure of Chiral Graphene Tubules[J].Appl.Phys.Lett.,1992,60(18):2204 -2206. 被引量:1
  • 3Tanemura M,Tanaka J,Itoh K,et al.Self-regenerative Field Emission Source[J].Appl.Phys.Lett.,2005,87(19):193102-193104. 被引量:1
  • 4Jung Y J,Kar S,Talapatra S,et al.Aligned Carbon Nanotube-polymer Hybrid Architectures for Diverse Flexible Electronic Applications[J].Nano Lett.,2006,6(3):413-418. 被引量:1
  • 5Seelaboyina R,Huang J,Choi W B.Enhanced Field Emission of Thin Multiwall Carbon Nanotubes by Electron Multiplication from Microchannel Plate[J].Appl.Phys.Lett.,2006,88:194104(1-3). 被引量:1
  • 6Bezryadin A,Verschueren A R M,Tans S J,et al.Multiprobe Transport Experiments on Individual Single-wall Carbon Nanotubes[J].Phys.Rev.Lett.,1998,80:4036-4039. 被引量:1
  • 7Tersoff J.Contact Resistance of Carbon Nanotubes[J].Appl.Phys.Lett.,1999,74:2122-2124. 被引量:1
  • 8Anantram M P,Datta S,Xue Y.Coupling of Carbon Nanotubes to Metallic Contacts[J].Phys.Rev.B,2000,61:14219-14224. 被引量:1
  • 9Seidel R,Liebau M,Duesberg G S,et al.In-situ Contacted Single-walled Carbon Nanotubes and Contact Improvement by Electroless Deposition[J].Nano Lett.,2003,3(7):965-968. 被引量:1
  • 10Pablo P J,Graugnard E,Walsh B,et al.A Simple,Reliable Technique for Making Electrical Contact to Multiwalled Carbon Nanotubes[J].Appl.Phys.Lett.,1999,74:323-325. 被引量:1

二级参考文献13

  • 1孙晓刚,余扬帆,刘勇,朱正吼.稀土改性碳纳米管宽带吸波材料[J].机械工程材料,2006,30(1):66-67. 被引量:12
  • 2Lijima C. Helical Microtubules of Graphitic Carbon [ J ]. Nature, 1991, 354:56-58. 被引量:1
  • 3Falvo M R, Clary G J, Taylor, et al. Bending and Buckling of Carbon Nanotubes Under Large Strain[J]. Nature,1997, 389:582-586. 被引量:1
  • 4Salvetat J P, Bonard J M, Thomson N H, et al. Mechanical Properties of Carbon Nanotubes[ J]. Appl. Phys. A. , 1999, 69:255-260. 被引量:1
  • 5Demczyk B G, Wang Y M, Cumings J, et al. Direct Mechanical Measurement of the Tensile Strength and Elastic Modulus of Muhiwalled Carbon Nanotubes[ J]. Material Science and Engineering, 2002 ,A334 : 173-178. 被引量:1
  • 6Berber S, Kwon Y K, Tomanek D. Unusually High Thermal Conductivity of Carbon Nanotubes[ J]. Phys. Rev. Lett. ,2000,84:4613-4616. 被引量:1
  • 7Ebbesen T W, Lezec H J, Hiura H, et al. Electrical Conductivity of Individual Carbon[ J]. Nature, 1996,382:54-56. 被引量:1
  • 8Tang Z K, Zhang L Y, Wang N, et al. Superconductivity in 4 Angstrom Single-walled Carbon Nanotubes[ J ]. Science,2001,292:3462-3465. 被引量:1
  • 9Li W Z, Xie S S, Qian L X, et al. Large-scale Synthesis of Aligned Carbon Nanotubes[ J]. Science, 1996,274:1701-1706. 被引量:1
  • 10胡传忻.隐身涂层技术[M].北京:化学工业出版社,2004:342-362. 被引量:25

共引文献13

同被引文献87

  • 1夏阳华,熊惟皓,丰平.高能球磨制备Ti(C,N)基金属陶瓷硬质相超微粉[J].硬质合金,2004,21(2):81-85. 被引量:3
  • 2Iijima S. Helicab microtubules of graphitic carbon[J].Nature,1991,(07):56-58. 被引量:1
  • 3Bonard JM,Salvetat JP,Stockli T. Field emission from carbon nanotubes:Perspectives for applications and clues to the emission mechanism[J].Applied Physics A:Materials Science and Processing,1999.245-254. 被引量:1
  • 4De Jonge N,Druten NJ. Field emission from individual multiwalled carbon nanotubes prepared in an electron microscope[J].Ultramicroscopy,2003.85-91. 被引量:1
  • 5Groening O,KuettelOM,Emmenegger C. Field emission properties of carbon nanotubes[J].Journal of Vacuum Science and Technology,2000.665-678. 被引量:1
  • 6Saito Y,Uemura S. Field emission from carbon nanotubes and its application to electron sources[J].Carbon,2000.169-182. 被引量:1
  • 7Jonge N,Bonard JM. Carbon nanotube electron sources and applications[J].Philosophical Transactions of Royal Society London A,2004.2239-2266. 被引量:1
  • 8Senda S,Sakai Y,Mizuta Y. Super-miniature X-ray tube[J].Applied Physics Letters,2004,(23):5679-5681. 被引量:1
  • 9Saito Y,Uemura S,Hamaguchi K. Cathode ray tube lighting elements with carbon nanotube field emitters[J].Japanese Journal of Applied Physics,1998.346-348. 被引量:1
  • 10Uemura S,Seko Y,Kamogawa H. CRT light-element for outdoor giant display[R].ITE,1993.31-36. 被引量:1

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部