期刊文献+

Existence Theorem of Solutions for Mixed Variational Inequality in Banach Spaces

Existence Theorem of Solutions for Mixed Variational Inequality in Banach Spaces
下载PDF
导出
摘要 By using the property of generalized f-projection operator and FKKM theorem, the existence theorem of solutions for the mixed variational inequality is proved under weaker assumption in reflexive and smooth Banach space. The results improve and extend the corresponding results shown recentlv. By using the property of generalized f-projection operator and FKKM theorem, the existence theorem of solutions for the mixed variational inequality is proved under weaker assumption in reflexive and smooth Banach space. The results improve and extend the corresponding results shown recentlv.
出处 《Journal of Mathematical Research and Exposition》 CSCD 2010年第2期323-328,共6页 数学研究与评论(英文版)
基金 Supported by the Scientific Research Fund of Sichuan Provincial Education Department (Grant No.07ZA098) a grant from the "project 211(Phase Ⅲ)" the Scientific Research Fund of the Southwestern University of Finance and Economics
关键词 mixed variational inequality generalized f-projection operator existence theorem FKKM theorem. mixed variational inequality generalized f-projection operator existence theorem FKKM theorem.
  • 相关文献

参考文献10

  • 1ALBER Y. Metric and GenerMized Projection Operators in Banach Spaces: Properties and Applications[C]. Proceedings of the Israel Seminar on Functional Differential Equations, Ariel, Israel, 1994, 1: 1-21. 被引量:1
  • 2ALBER Y I. Metric and GenerMized Projection Operators in Banach Spaces: Properties and Applications [M]. Dekker, New York, 1996. 被引量:1
  • 3ALBER, Y, GUERRE-DELABRIERE S. On the projection methods for fixed point problems [J]. Analysis (Munich), 2001, 21(1): 17-39. 被引量:1
  • 4LI Jinlu. The generalized projection operator on reflexive Banach spaces and its applications [J]. J. Math. Anal. Appl., 2005, 306(1): 55-71. 被引量:1
  • 5ZENG Liuchuan, YAO J C. Existence theorems for variational inequalities in Banach spaces [J]. J. Optim. Theory Appl., 2007, 132(2): 321-337. 被引量:1
  • 6WU Keeling, HUANG Nanjing. The generalised f-projection operator with an application [J]. Bull. Austral. Math. Soc., 2006, 73(2): 307-317. 被引量:1
  • 7WU Keqing, HUANG Nanjing. Properties of the generalized f-projection operator and its applications in Banach spaces [J]. Comput. Math. Appl., 2007, 54(3): 399-406. 被引量:1
  • 8NOOR M A. A new iterative method for monotone mixed variational inequalities [J]. Math. Comput. Modelling, 1997, 26(7): 29-34. 被引量:1
  • 9FAN K. A generalization of Tychonoff's Axed point theorem [J]. Math. Ann., 1960/1961, 142: 305-310. 被引量:1
  • 10ZHANG Qingbang, DENG Ruliang, LIU Liu. Existence theorem and algorithm for a general implicit variational inequality in Banach space [J]. Applied Math. Comput., 2009, 215: 636-643. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部