期刊文献+

基于虚拟仪器和模糊SVM的航空发动机润滑系统故障诊断方法 被引量:3

Fault Diagnosis Method of Aviation-engine Lubrication System Based on Virtual Instrument and Fuzzy SVM
下载PDF
导出
摘要 利用虚拟仪器技术实现基于模糊支持向量机的航空发动机润滑系统故障诊断。通过对润滑油油液中磨损元素进行光谱识别与分析,提取故障诊断所需的特征参数作为支持向量机的学习样本,使用ActiveX技术在LabVIEW中调用MATLAB.m文件,完成对润滑系统的故障诊断,并比较了基于BP神经网络的诊断方法与模糊SVM故障诊断方法的诊断结果。结果表明:模糊SVM方法在故障诊断速度和诊断准确性方面都具有明显优势,其平均故障识别率达到95%以上。 Based on virtual instrument and fuzzy SVM,a fault-diagnosis system was set up for aviation-engine lubrication system.According to spectrum analysis and recognition of wear elements in lubrication oil,the char-acteristic vectors were extracted as the input signal of fuzzy SVM.Using the MATLAB script in LabVIEW based on the technology of Active,the fault diagnosis of the aviation-engine lubrication system was realized.The result of fault diagnosis of BP neural-network was compared with that of fuzzy SVM.The results show that fuzzy SVM method has a transparent superior in fault diagnosis with high speed and accuracy,the average rate of fault recognition can reach 95%.
出处 《润滑与密封》 CAS CSCD 北大核心 2010年第3期90-95,共6页 Lubrication Engineering
关键词 虚拟仪器 模糊支持向量机 润滑系统 故障诊断 virtual instrument fuzzy SVM lubrication system fault diagnosis
  • 相关文献

参考文献10

  • 1杨乐平,李海涛,杨磊编著..LabVIEW程序设计与应用 第2版[M].北京:电子工业出版社,2005:459.
  • 2李应红,尉询楷,刘建勋.支持向量机的应用工程[M].北京:兵器工业出版社,2004:128-134. 被引量:4
  • 3毛美娟,朱子新,王峰编著..机械装备油液监控技术与应用[M].北京:国防工业出版社,2006:440.
  • 4莫慧芳..基于LabVIEW的小波神经网络在电机声频故障诊断中的应用研究[D].广东工业大学,2005:
  • 5李田田.基于虚拟仪器的电路故障诊断[M].大连:大连理工大学,2007. 被引量:1
  • 6徐一艳..航空发动机早期故障诊断方法研究[D].西北工业大学,2006:
  • 7胡金海,谢寿生,杨帆,蔡开龙,王海涛.基于支持向量机的组合分类方法及应用[J].推进技术,2007,28(6):669-673. 被引量:9
  • 8Leo H Chiang, Mark E Kotanchek, Arthur K Kordon. Fault Diagnosis Based on Fisher Discriminant Analysis and Support Vector Machines [ J ]. Computers & Chemical Engineering, 2004,28 (8) :1389 - 1401. 被引量:1
  • 9DAVID M J T, ROBERT P W D. Support vector data description[ J ]. Machine Learning ,2004,54:45 - 66. 被引量:1
  • 10Jack L B, Nandi A K. Support Vector Machines for Detection and Characterization of Rolling Element Bearing Faults [ J ]. Proceedings of the Institution of Mechanical Engineers, Part C :Journal of Mechanical Engineering Science ,2001,215 ( 9 ) : 1065 - 1074. 被引量:1

二级参考文献9

  • 1Yoav Freund, Schapire Robert E. A decision-theoretic generalization of online learning and an application to boosting [ J ]. Journal of Computer and System Sciences, 1997, 55(1). 被引量:1
  • 2Ting K M, Zheng Z J. A study of Adaboost with naive bayesian classifiers: weakness and improvement [ J ]. Computational Intelligence, 2003, 19 (2). 被引量:1
  • 3Dietterich Thomas G. An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization [ J ]. Machine Learning, 2000,40 ( 2 ). 被引量:1
  • 4Holger Schwenk, Yoshua Bengio. Boosting neural networks[ J ]. Nuerul Computution ,2000,12 : 1869-1887. 被引量:1
  • 5Gunnar Ratsch. Soft margins for adaboost[ J ]. Machine Learning, 2001,42 ( 3 ). 被引量:1
  • 6Giorgio Valentini, Dietterich Thomas G. Bias-variance analysis of support vector machines for the development of svm-based ensemble methods [ J ]. Journal Machine Learning Research, 2004,5:725-775. 被引量:1
  • 7http ://mlg. anu. edu. au/-raetsch/data. 被引量:1
  • 8沈学华,周志华,吴建鑫,陈兆乾.Boosting和Bagging综述[J].计算机工程与应用,2000,36(12):31-32. 被引量:66
  • 9夏利民,戴汝为.基于Boosting模糊分类的滚动轴承故障诊断[J].模式识别与人工智能,2003,16(3):323-327. 被引量:14

共引文献10

同被引文献20

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部