期刊文献+

Smarandache函数的几个性质 被引量:3

The Properties of the Smarandache Function
下载PDF
导出
摘要 对于任意给定的正整数n,著名的Smarandache函数S(n)定义为S(n)=min{m∶m∈N,n|m!}.利用初等方法和解析方法研究函数S(n)的有关性质,并给出了一些有趣的渐近公式. Given a positive integer n,the definition of the famous Smarandache function is. S(n) = min{m s m ∈ N, n |m! }. The main purpose of this paper is to study the properties of the Smarandache function by using the elementary and analytic methods and to give some interesting asymptotic formulas.
出处 《甘肃科学学报》 2010年第1期24-25,共2页 Journal of Gansu Sciences
基金 国家自然科学基金资助项目(10671155) 商洛学院科研基金项目(07sky16)
关键词 SMARANDACHE函数 正整数 渐近公式 Smarandache function positive integer asqmptotic formula
  • 相关文献

参考文献8

  • 1Smarandaehe F. Only Proplem, Not Solution [M]. Chicago: Xiquan Publishing House,1993. 被引量:1
  • 2Wang Yong-xing. On the Smarandache Function[J]. Reserch on Smarandache Problem in Number Theory,2005,2:103-106. 被引量:1
  • 3Lu Ya-ming. On the Solution of an Equation Involving the Smarandache Function[J]. Scientia Magna, 2006,2(1) : 76-79. 被引量:1
  • 4Sandor J. On a Dual of the Pseudo-smarandaehe Function[J].Smarandache Notions, 2002,13 : 16-23. 被引量:1
  • 5杨存典,李超,刘端森.关于五边形数的余数及其渐进公式[J].甘肃科学学报,2007,19(2):16-18. 被引量:8
  • 6徐哲峰.Smarandache函数的值分布性质[J].数学学报(中文版),2006,49(5):1009-1012. 被引量:88
  • 7Pan Cheng-dong, Pan Cheng-biao. The Elementary Number Theory[M]. Beijing:Beijing University Press,2003. 被引量:1
  • 8Yang Cun-dian, Liu Duan-sen. On the Mean Value of a New Arithmetical Function[A]. Research on Smarandache Problems in Number Theory Ⅱ[C], Xi'an: Xiquan Publishing House Chinese Branch, 2004. 被引量:1

二级参考文献11

  • 1杨存典,李超,李军庄.一个数论函数的渐进公式[J].甘肃科学学报,2006,18(2):20-21. 被引量:5
  • 2Erdos P, Problem 6674, Amer. Math. Monthly, Vol. 98, 1991, 965. 被引量:1
  • 3Tabirca S, About S-multiplicative functions, Octogon, 1999, 7: 169-170. 被引量:1
  • 4Apstol T. M, Introduction to analytic number theory, New York: Springer-Verlag, 1976, 77. 被引量:1
  • 5Yi yuan.On the Asymptotic Property of Divisor Function for Addi tive Complement[J].Research on Smarandache Problems in Number Theory.Hexis,2004:65-68. 被引量:1
  • 6Zhu Weyi.On the k-power Complement and k-power Free Number Sequence[J].Smarandache Notions Journal,2004,14:66-69. 被引量:1
  • 7Yao Weli.On the k-power Complements Sequence[J].Research on Smara ndache Problems in Number Theory.Hexis,2004,43-46. 被引量:1
  • 8Liu Hongyan,Liu Yuanbing.A Note on the 29-th Smarandache Problem[J].Smarandache Notions Journal,2004,14:156-158. 被引量:1
  • 9Xu Zhefeng.On the Additive k-power Complements[J].Research on Smarandache Problems in Number Theory.Hexis,2004.13-16. 被引量:1
  • 10Ding Liping.On the Additive k-power Complements[J].Research on Smarandache Problem in Nunmber Theory.Hexis,2005.24-26. 被引量:1

共引文献93

同被引文献17

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部