期刊文献+

基于特征提取的分类集成在脾虚证诊断中的应用 被引量:4

APPLYING FEATURE SELECTION-BASED CLASSIFICATION ENSEMBLE IN SPLEEN ASTHENIA DIAGNOSIS
下载PDF
导出
摘要 数据挖掘技术在中医辅助诊断中被日益重视,计算机辅助诊断本质上是一个数据挖掘分类任务。针对中医临床数据的模糊性和不完整性,提出了一种基于特征提取的分类集成模型。这种模型能将扰动训练数据和扰动输入属性结合起来,生成精确且差异度大的个体分类器。与单个分类器和其他集成方法的对比实验,证明这种新模型在脾虚证辅助诊断上有更低的错误率。进一步的实验显示特征提取在这种新模型中对降低错误率有显著的作用。 Data mining attracts increasing attention in computer-aided diagnostic system of traditional Chinese medicine. In essential, computer-aided diagnosis is a classification task. The clinical data of traditional Chinese medicine is characterized by incompletion and ambiguity. According to this feature, in this paper we propose a new classification ensemble model which is based on feature selection. This model is able to generate precise individual classifier with big diversity by combining the disarrangements of training data and input attributes. The contrast experiments carried on with the single classifier and other integration methods prove that this new model has lower error rate in computer-aided diagnosis of Spleen asthenia. Further experiments indicate that the feature selection exerts an obviously positive effect in minimizing error rate.
出处 《计算机应用与软件》 CSCD 2010年第3期22-25,共4页 Computer Applications and Software
基金 国家自然科学基金重大研究计划重点项目(90209004)
关键词 分类集成 特征提取 计算机辅助诊断 脾虚证 Classification ensemble Feature selection Computer-aided diagnosis Spleen asthenia
  • 相关文献

参考文献9

  • 1王永炎.完善中医辨证方法体系的建议[J].中医杂志,2004,45(10):729-731. 被引量:243
  • 2龚燕冰,倪青,王永炎.中医证候研究的现代方法学述评(一)——中医证候数据挖掘技术[J].北京中医药大学学报,2006,29(12):797-801. 被引量:96
  • 3Wolpertand D H, Macready W G. No free lunch theorems for search[J].IEEE TEC, 1997,1 ( 1 ) :67 -S2. 被引量:1
  • 4Wolpertand D H, Macready W G. No free lunch theorems for optimization. Tech. Rep [ R ]. SFI-TR-95-02-010, Santa Fe Institute, 1995. 被引量:1
  • 5Lan H Witten, Eibe Frank.数据挖掘:实用机器学习技术[M].董琳,邱泉,译.2版.北京:机械工业出版社,2006. 被引量:1
  • 6Dietterich T G. Machine learning research:four current directions [ J ]. AI Magazine, 1997,18 (4) :97 - 136. 被引量:1
  • 7Krogh A, Vedelsby J. Neural network ensembles, cross validation, and ac- tive/earning. In:Advances in Neural Information Processing Systems 7, Cambridge, MA: M1T Press, 1995:231 - 238. 被引量:1
  • 8Kunchevl L I, Whitaker C J. Measures of diversity in classifier ensembles[J]. Machine Learning,2003,51 (2) :181 -207. 被引量:1
  • 9Cunningham Padraig. Overfitting and Diversity in Classification Ensembles based on Feature Selection[ R]. Trinity College Dublin, Department of Computer Science. Technical Report, TCD-CS-2000- 07,2000. 被引量:1

二级参考文献21

共引文献326

同被引文献81

引证文献4

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部