期刊文献+

一种基于核的模糊多球分类算法及其集成 被引量:1

Kernel-based fuzzy multiple spheres classification algorithm and its ensemble
下载PDF
导出
摘要 提出了一种基于核的模糊多球分类算法,该算法在训练阶段为每一个模式类构造多个最小球覆盖其所有的训练样本,并且在识别阶段算法利用一个模糊隶属函数来归类测试样本。此外,在提出的分类算法的基础上,还给出了它的集成方法。最后,采用了4个真实数据集进行实验,实验结果表明该文提出的算法具有较好的分类性能,是一种行之有效的分类算法。 In this paper,a novel kernel-based fuzzy multiple spheres classification algorithm is proposed.In the training process, all training samples of each class are covered by the constructed multiple spheres,each of which encompasses as many samples with the same class and has the minimum volume,and a fuzzy membership function is defined to label the testing samples in the classification process.Moreover,an ensemble method based on the proposed classification algorithm is presented.Finally,experi- ments on four real datasets show that our approach is valid and has encouraging pattern classification performance.
出处 《计算机工程与应用》 CSCD 北大核心 2007年第27期10-12,25,共4页 Computer Engineering and Applications
基金 国家自然科学基金(the National Natural Science Foundation of China under Grant No.60672074) 江苏省自然科学基金(the Natural Science Foundation of Jiangsu Province of China under Grant No.BK2006569)
关键词 模式分类 核函数 山峰函数 模糊隶属函数 分类集成 pattern classification kernel function mountain function fuzzy membership function classification ensemble
  • 相关文献

参考文献11

  • 1Jain A K,Duin R P W,Mao J.Statistical pattern recognition:a review[J].IEEE Trans Pattern Anal Mach Intell,2000,22(1):4-33. 被引量:1
  • 2DasatrthyB V.Nearest neighbor(NN) norms:NN pattern classification techniques[M].Los Alamitos,CA:IEEE Computer Society Press,1990. 被引量:1
  • 3Qiang G Q,Zhang P.Neural networks for classification:a survey[J].IEEE Trans Syst Man Cybern Part C,2000,30(4):451-458. 被引量:1
  • 4Burges J C.A tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery,1998,2:121-167. 被引量:1
  • 5Cristianini N,Shawe-Taylor J.An introduction to support vector machines and other kernel-based learning methods[M].Cambridge U K:Cambridge Univ Press,2000. 被引量:1
  • 6Wolfe P.A duality theorem for nonlinear programming[J].Quarterly of Applied Mathematics,1961,19:239-244. 被引量:1
  • 7Kuhn H W,Tucker A W.Nonlinear programming[C]//Proceedings 2th Berkeley Symposium on Mathematical Statistics and Probabilistics.Berkeley:University of California Press,1951:481-492. 被引量:1
  • 8Camastra F,Verri A.A novel kernel method for clustering[J].IEEE Trans Pattern Anal Mach Intell,2005,27(5):801-805. 被引量:1
  • 9Yager P R,Filev D P.Approximate clustering via the mountain method[J].IEEE Trans Syst Man Cybern,1994,24(8):1279-1284. 被引量:1
  • 10Statlog coolection[DB/OL].http://www.niaad.liacc.up.pt/old/statlog/datasets.html. 被引量:1

同被引文献58

  • 1陈斌,冯爱民,陈松灿,李斌.基于单簇聚类的数据描述[J].计算机学报,2007,30(8):1325-1332. 被引量:18
  • 2KUBAT M,HOLTE R C,MATW IN S. Machine learning for the detection of oil spills in satellite radar images[J].Machine Learning,1998,(223):195-215. 被引量:1
  • 3LIU Y H,CHEN Y T. Face recognition using total margin-based adaptive fuzzy support vector machines[J].IEEE Transactions on Neural Networks,2007.178-192. 被引量:1
  • 4JAPKOWICZ N. Learning from Imbalanced Data Sets[A].2000. 被引量:1
  • 5CHAWLA N V,JAPKOWICZ N,KOLCZ A. Workshop Learning from Imbalanced Data Sets Ⅱ[A].Washington DC:AAAI Press,2003. 被引量:1
  • 6CHAWLA N V,JAPKOWICZ N,KOLCZ A. Editorial:Special Issue on Learning from Imbalanced Data Sets[J].ACM SIGKDD Explorations,2004,(01):1-6. 被引量:1
  • 7SUN Y,KAMEL M S,WANG Y. Boosting for Learning Multiple Classes with Imbalanced Class Distribution[A].2006.592-602. 被引量:1
  • 8ABE N,ZADROZNY B,LANGFORD J. An Iterative Method for Multi-Class Cost-Sensitive Learning[A].Washington:IEEE Press,2004.3-11. 被引量:1
  • 9CHEN K,LU B L,KWOK J. Efficient Classification of Multi-Label and Imbalanced Data Using Min-Max Modular Classifiers[A].2006.1770-1775. 被引量:1
  • 10ZHOU Z H,LIU X Y. On Multi-Class Cost-Sensitive Learning[A].2006.567-572. 被引量:1

引证文献1

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部