摘要
考虑一类时间分数阶电报方程,它是由传统的电报方程推广而来,即时间一阶、二阶导数分别用α(1/2,1],2α(1,2]阶Caputo导数代替.利用空间有限的sine或cosine变换及时间Laplace变换,给出了该方程有限区间上带Dirichlet和Neumann边界条件的两类初边值问题的解析解.该解由Mittag-Leffler函数的级数形式给出.
The so-called time-fractional telegraph equation is discussed.It is a generalization of the classical telegraph equation in case the first-and two-order time derivatives are replaced with Caputo derivatives of order α(12,1],2α(1,2].By using the spatial finite sine and cosine transform,and the temporal Laplace transform,the existence of the analytic solutions of its initial-boundary problems in a boundedspace domain with Dirichlet and Neumann boundary conditions is derived.The analytic solutions are given in the form of series of the Mittag-Leffler functions.
出处
《华南师范大学学报(自然科学版)》
CAS
北大核心
2010年第1期15-19,共5页
Journal of South China Normal University(Natural Science Edition)
基金
国家自然科学基金数学天元基金资助项目(10726061)
国家教育部高等学校博士点基金新教师基金资助项目(20070561040)
广东省自然科学基金资助项目(07300823)