期刊文献+

有限区间上的时间分数阶电报方程的解析解 被引量:1

ANALYTIC SOLUTIONS FOR THE TIME-FRACTIONAL TELEGRAPH EQUATION DEFINED IN A BOUNDED DOMAIN
下载PDF
导出
摘要 考虑一类时间分数阶电报方程,它是由传统的电报方程推广而来,即时间一阶、二阶导数分别用α(1/2,1],2α(1,2]阶Caputo导数代替.利用空间有限的sine或cosine变换及时间Laplace变换,给出了该方程有限区间上带Dirichlet和Neumann边界条件的两类初边值问题的解析解.该解由Mittag-Leffler函数的级数形式给出. The so-called time-fractional telegraph equation is discussed.It is a generalization of the classical telegraph equation in case the first-and two-order time derivatives are replaced with Caputo derivatives of order α(12,1],2α(1,2].By using the spatial finite sine and cosine transform,and the temporal Laplace transform,the existence of the analytic solutions of its initial-boundary problems in a boundedspace domain with Dirichlet and Neumann boundary conditions is derived.The analytic solutions are given in the form of series of the Mittag-Leffler functions.
作者 黄凤辉
出处 《华南师范大学学报(自然科学版)》 CAS 北大核心 2010年第1期15-19,共5页 Journal of South China Normal University(Natural Science Edition)
基金 国家自然科学基金数学天元基金资助项目(10726061) 国家教育部高等学校博士点基金新教师基金资助项目(20070561040) 广东省自然科学基金资助项目(07300823)
关键词 分数阶电报方程 CAPUTO分数阶导数 sine(cosine)变换 LAPLACE变换 fractional telegraph equations Caputo fractional derivative sine(cosine) transform Laplace transform
  • 相关文献

参考文献1

二级参考文献9

  • 1Feller, W., On a generalization of Marcel Riesz' potential and semigroups generated by them, Meddelanden Universitets Matematiska Siminarium, Lund, 21(1952), 73-81. 被引量:1
  • 2Fujita, Y., Integrodifferential equation which interpolates the heat and wave equations, Osaka Journal of Mathematics, 27(1990), 309-321; 797-804. 被引量:1
  • 3Orsingher, E., Probability law, flow functions, maximum distributions of wave-governed random motions and their connections with Kirchoff's law, Stochastic Processes and Their Applications, 34(1990), 49-66. 被引量:1
  • 4Orsingher, E., Motions with reflecting and absorbing barriers driven by the telegraph equation, Random Operators and Stochastic Equations, 3:1(1995), 9-21. 被引量:1
  • 5Riesz, M., L'integrale de Riemann-Liouville et le problème de Cauchy, Acta Mathematica, Lund,81(1948), 1-223. 被引量:1
  • 6Saichev, A. I. & Zaslavsky, G. M., Fractional kinetic equations: solutions and applications, Chaos, 7(1997), 753-764. 被引量:1
  • 7Samko, S. G., Kilbas, A. A. & Marichev, O. I., Fractional integrals and derivatives, Gordon and Breach Science Publishers, Amsterdam, 1993. 被引量:1
  • 8Samorodnitsky, G. & Taqqu, M.S., Stable non-Gaussian random processes, Chapman and Hall, New York 1994. 被引量:1
  • 9Schneider, W. R. & Wyss, W., Fractional diffusion and wave equations, Journal of Mathematical Physics, 30(1989), 134-144. 被引量:1

共引文献3

同被引文献29

  • 1马亮亮.一种时间分数阶对流扩散方程的隐式差分近似[J].西北民族大学学报(自然科学版),2013,34(1):7-12. 被引量:5
  • 2刘诗焕,谢果,赖绍永.一类电报方程初值问题的整体解[J].四川师范大学学报(自然科学版),2006,29(2):155-157. 被引量:5
  • 3章红梅,刘发旺.时间分数阶电报方程的一种解技巧[J].厦门大学学报(自然科学版),2007,46(1):10-13. 被引量:8
  • 4蔡红梅,陈静,赖绍永.一类电报方程解的双扰动研究[J].四川师范大学学报(自然科学版),2007,30(3):313-317. 被引量:3
  • 5郭柏林,蒲学科,黄风辉.分数阶偏微分方程及其数值解[M].北京:科学出版社,2011. 被引量:5
  • 6Ortega R, Robles-Perez A. A maximum principle for periodic solutions of the telegraph equation [J]. Journal of Mathematical Analysis Applications, 1998, (221): 625. 被引量:1
  • 7Mawwhin J, Ortega R, Robles-Perez A. A maxi- mum principle for bounded solutions of the telegraph equations and applications to nonlinear forcing [J]. Journal of Mathematical Analysis Applications, 2000, (251): 695. 被引量:1
  • 8Chert Jinhua, Liu Fawang, Anh V. Analytical solu- tion for the time-fractional telegraph equation by the method of separating variables [J]. Journal of Mathematical Analysis Applications, 2008, 338: 1364. 被引量:1
  • 9Dehghan M, Shokri A. A numerical method for sol- ving the hyperbolic telegraph equation [J]. Numeri-eal Methods for Partial Differential Equations, 2008, 24(4) : 1080. 被引量:1
  • 10Saadatmandi A, Dehghan M. Numerical solution of hyperbolic telegraph equation using the Chebyshev Tau method [J]. Numerical Methods for Partial Differential Equations, 2009, 26(1): 239. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部