期刊文献+

正交回归和一般最小二乘回归的几何误差分析 被引量:7

Geometric Error Analysis for Orthogonal Regression and Ordinary Least Squares Regression
原文传递
导出
摘要 线性回归分析中,一般最小二乘回归的目标函数只考虑一个方向的扰动,采用基于几何距离的正交回归能克服固定单方向最优带来的拟合稳定性差的弊端。本文分析和比较了正交回归和一般最小二乘回归的误差,并定量地给出了两者的几何误差与原始数据的方差、相关系数之间的关系,指出正交回归的几何误差小于一般最小二乘回归,并且正交回归具有旋转不变性。最后,以平面直线拟合为例验证了这个结论。 In linear regression analysis, the objective function of the ordinary least squares regression only takes the uncertainty of single variable into account, while the objective function in orthogonal regression or the regression based on geometric distance can overcome the ill stability incurred in the ordinary regression caused by single variable optimization. In this paper, the errors are analyzed and compared between orthogonal regression and ordinary least squares regression, which are expressed as the functions of raw data's covariances and correlation coefficients. It indicates that the error in the orthogonal regression is less than that in ordinary least squares regression. Furthermore, it is rotationally invariant. The results are proved by the 2D line fitting examples.
作者 胡明晓
出处 《数理统计与管理》 CSSCI 北大核心 2010年第2期248-253,共6页 Journal of Applied Statistics and Management
关键词 正交回归 最小二乘法 几何误差 直线拟合 几何距离 orthogonal regression, least squares algorithm, geometric error, line fitting, geometric distance
  • 相关文献

参考文献9

  • 1Press W H, Teukolsky S A, Vetterling W T, Flannery B P. Numerical Recipes in C++: The Art of Scientific Computing, Second Edition [M]. Cambridge: The Press of the University of Cambridge, 2002: 661-711. 被引量:1
  • 2王松桂等编..线性统计模型 线性回归与方差分析[M].北京:高等教育出版社,1999:236.
  • 3Jackson J D, Dunlevy J A. Orthogonal least squares and the interchangeability of alternative proxy variables in the social sciences [J]. The Statistician, 1988, 37(1): 7-14. 被引量:1
  • 4程毛林.经济预测中的正交回归分析[J].运筹与管理,2001,10(3):99-102. 被引量:3
  • 5Krystek M, Anton M. A weighted total least-squares algorithm for fitting a straight line [J]. Mea- surement Science and Techenology, 2007, 18(11): 3438-3442. 被引量:1
  • 6Leng Ling, Zhang Tianyi, Kleinman L, Zhu Wei. Orinary Least Square Regression, Orthogonal Regression, Geometric Mean Regression and their Applications in Aerosol Science [C]. //Graham Douglas. Journal of Physics: Conference Series, Boston, Massachusetts, USA, June 2007. Bristol, UK: Institute of Physics and IOP Publishing Limited, 2007, Vol 78: 012084. 被引量:1
  • 7王霞,包启挺.聚类回归分析(CLR)在市场细分研究中的应用[J].数理统计与管理,2008,27(2):338-345. 被引量:11
  • 8唐启义,唐洁.偏最小二乘回归分析在均匀设计试验建模分析中的应用[J].数理统计与管理,2005,24(5):45-49. 被引量:57
  • 9The MathWorks Inc. Statistic Toolbox 7.0: Fitting an Orthogonal Regression Using Principal Components Analysis [EB/OL]. http://www.mathworks.com/products/statistics/demos.html?file=/ products/demos/shipping/stats/orthoregdemo.html. 被引量:1

二级参考文献17

共引文献68

同被引文献66

  • 1周富强,张广军,江洁.线结构光视觉传感器的现场标定方法[J].机械工程学报,2004,40(6):169-173. 被引量:44
  • 2丁丽霞,周斌,王人潮.遥感监测中5种相对辐射校正方法研究[J].浙江大学学报(农业与生命科学版),2005,31(3):269-276. 被引量:36
  • 3赛晓勇,邢秦菊,孟定茹,贾玉然,蔡凯平,李岳生,周晓农.五种预测方法在退田还湖区血吸虫病发病的拟合效果评价[J].第四军医大学学报,2006,27(17):1603-1605. 被引量:7
  • 4陈垒,马润赓,申维.基于典型相关分析的遥感影像变化检测[J].地质通报,2007,26(7):916-920. 被引量:7
  • 5[美]Johnson R A,Wichern D W.实用多元统计分析[M].北京:清华大学出版社,2001. 被引量:3
  • 6Song C, Woodcock C E, Seto K C, et al. Classification and change detection using Landsat TM data: when and how to correct atmospheric effect s [ J ]. Remote Sensing of Environment, 2001,75 : 230-244. 被引量:1
  • 7Cantya M J, Nielsenb A A, Schmidt M. Automatic Ra- diometric Normalization of Multitemporal Satellite Imagery [ J ]. Remote Sensing of Environment,2004,91:441-451. 被引量:1
  • 8Schmidt M, King E, McVicar T R. Towards an internally consistent calibration for 11 AVHRR instruments in a 20- year time series of satellite data[ C] //W. P. Menzel & T. Iwasaki (Eds.), Proc. 4th International Asia-Pacific Remote Sensing Symposium. Honolulu ( pp. 5658 ) . Bellingham, Wash.. SPIE. 被引量:1
  • 9Schroeder T A, Cohen W B, Song C, Canty M J, Zhiqiang Y. Radiometric calibration of Landsat data for characterization of early successional forest patterns in western Oregon [ J ]. Remote Sensing of Environment, 2006,103(1) : 16-26. 被引量:1
  • 10Yang X, Lo C P. Relative radiometric normalization per- formance for change detection from multi-date satellite im- ages [ J ]. Photogrammetric Engineering & Remote Sens- ing,2000,66,967-980. 被引量:1

引证文献7

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部