期刊文献+

一种四维向量空间模型的Web新闻文本分类方法 被引量:4

A Method for Web News-Text Classification with Four-dimensional Vector Space Model
下载PDF
导出
摘要 文本分类研究逐渐成为网络文本挖掘的研究热点,针对中文文本进行自动分类的研究也在逐渐升温。针对新闻文本的特殊性,在文本分类中经典的向量空间模型的基础上,提出了一套改进的四维向量空间模型及自适应追踪策略,进而提高了新闻文本分类的效果。实验结果表明,算法可以使传统空间向量模型的分类性能由81.5%提高至92.49%,证明算法是有效的。 Web - page classification has become a hot spot in the fields of Web Text Mining in recent years. Research in Chinese text automatic classification is gradually warming. In this paper, we have put forward a four - dimensional vector space model which is based on the classic vector space model, and have improved the adaptive methods. Experimental results show that the proposed method can improve the effectiveness of classification from 81.5% to 92.49%, which prove that the method is effective.
出处 《微计算机应用》 2010年第3期58-62,共5页 Microcomputer Applications
关键词 文本挖掘 文本分类 向量空间模型 四维向量空间模型 text mining, text classification, vector space model, four -dimensional vector space model
  • 相关文献

参考文献9

二级参考文献18

  • 1金珠,林鸿飞,赵晶.基于HowNet的话题跟踪及倾向性分类研究[J].情报学报,2005,24(5):555-561. 被引量:21
  • 2R Papka.On-line new event detection,clustering,and tracking:[Ph D dissertation].MA:University of Massachusetts Amherst,1999 被引量:1
  • 3K Hui,W Lam.Automatic event generation from multi-lingual news stories.In:Proc of the First ACM/IEEE-CS Joint Conf on Digital Libraries.Roanoke,New York:ACM Press,2001.23~24 被引量:1
  • 4N Stokes,J Carthy,A F Smeaton.Segmenting broadcast news streams using lexical chaining.In:T Vidal,P Liberatore,eds.Proc of STAIRS 2002.Amsterdam:IOS Press,2002.145~154 被引量:1
  • 5D Randall.The Universal Journalist,Second Edition.London:Pluto Press,2000 被引量:1
  • 6S H Lin,M C Chen,J M Ho,et al.ACIRD:Intelligent Internet document organization and retrieval.IEEE Trans on Knowledge and Data Engineering,2002,14(3):599~613 被引量:1
  • 7G Salton,B Buckley.Term-weighting approaches in automatic text retrieval.Information Processing and Management,1998,24(5):513~523 被引量:1
  • 8李晓明,阎宏飞,王继民.搜索引擎[M].北京:科学出版社,2005. 被引量:6
  • 9Yang Y C,Donddington J,Peerce R,et al.X Learning approaches for detecting and tracking news events[J].IEEE Intelligent Systems Special Issue on Applications of Intelligent Information Retrieval,1999 (14):32-43. 被引量:1
  • 10Carbonell A J,Doddington J,Yamron G,et al.Topic detection and tracking pilot study final report[A].In:proc DARPA Broadcast News Transcription and Understanding Workshop[C].San Francisco,CA:Morgan Kanfmann Publishers Inc,1998:194-218. 被引量:1

共引文献176

同被引文献58

引证文献4

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部