期刊文献+

NUMERICAL IMPLEMENTATION FOR A 2-D THERMAL INHOMOGENEITY THROUGH THE DYNAMICAL PROBE METHOD

NUMERICAL IMPLEMENTATION FOR A 2-D THERMAL INHOMOGENEITY THROUGH THE DYNAMICAL PROBE METHOD
原文传递
导出
摘要 In this paper, we present the theory and numerical implementation for a 2-D thermal inhomogeneity through the dynamical probe method. The main idea of the dynamical probe method is to construct an indicator function associated with some probe such that when the probe touch the boundary of the inclusion the indicator function will blow up. From this property, we can get the shape of the inclusion. We will give the numerical reconstruction algorithm to identify the inclusion from the simulated Neumann-to-Dirichlet map. In this paper, we present the theory and numerical implementation for a 2-D thermal inhomogeneity through the dynamical probe method. The main idea of the dynamical probe method is to construct an indicator function associated with some probe such that when the probe touch the boundary of the inclusion the indicator function will blow up. From this property, we can get the shape of the inclusion. We will give the numerical reconstruction algorithm to identify the inclusion from the simulated Neumann-to-Dirichlet map.
出处 《Journal of Computational Mathematics》 SCIE CSCD 2010年第1期87-104,共18页 计算数学(英文)
基金 supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD) under the grant number KRF-2006-214-C00007
关键词 Heat equation Dynamical probe method Neumann-to-Dirichlet map. Heat equation, Dynamical probe method, Neumann-to-Dirichlet map.
  • 相关文献

参考文献17

  • 1G. Alessandrini and M. Di Cristo, Stable determination of an inclusion by boundary measurements, SIAM J. Math. Anal., 37:1 (2005), 200-17. 被引量:1
  • 2J. Cheng, J.J. Liu and G. Nakamura, The numerical realization of probe method for the inverse scattering problems from the near-field data, Inverse Probl., 21 (2005), 839-55. 被引量:1
  • 3Y. Daido, H. Kang and G. Nakamura, A probe method for the inverse boundary value problem of non-stationary heat equations, Inverse Probl., 23 (2007), 1787-800. 被引量:1
  • 4Y. Daido, Reconstruction of Inclusion for Inverse Boundary Value Problem of Heat Equation Using Probe Method, Doctral thesis of Hokkaido University, 2007. 被引量:1
  • 5P.C. Hansen, Regularization tools: a Matlab package for analysis and solution of discrete ill-posed problems, Numer. Algorithms, 6 (1994), 1-35. 被引量:1
  • 6A. Friedman,Partial Differential Equations of Parabolic Type, Englewood Cliffs, N.J., 1964. 被引量:1
  • 7M. Ikehata, Reconstruction of inclusion from boundary measurements, J. Inverse and Ill-Posed Problems, 10 (2002), 37-65. 被引量:1
  • 8V. Isakov, K. Kim and G. Nakamura, Reconstruction of an unknown inclusion by thermal imaging, preprint, 2007. 被引量:1
  • 9V. Isakov, Inverse Problems for Partial Differential Equations (2nd ed.) (Applied Mathematical Sciences vol 127), Springer, New York, 2006. 被引量:1
  • 10R. Kress, Linear Integral Equations (2nd ed.), Springer, New York, 1999. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部