期刊文献+

利用前两代信息的改进粒子群优化算法

New modified particle swarm optimization on basis of two latest generations
下载PDF
导出
摘要 针对粒子群算法(PSO)在寻优后期尤其在高维搜索空间中无法得到满意结果的问题,提出了一种利用前两代信息的改进粒子群优化算法。在速度更换公式新加了一部分,该部分表示了粒子前两代的信息对自己下一步行为的影响。该部分主要根据当前粒子前两代位置求解出其前两代的中心位置,其作用类似于当前全局最优位置。同时深入探讨新加部分的学习因子范围及其对新改进算法的影响。仿真实验结果表明,新算法在全局搜索能力、收敛速度、精度和稳定性方面均有了显著提高。 A modified Particle Swarm Optimization (PSO) on the basis of the two latest generations was proposed to solve the problem that no satisfactory results can be reached during later period of PSO, especially in high-dimensional search space. A new part was added to the velocity of replacement formula, suggesting that the particle comprehensively utilized the information from the previous two acts to instruct its next step. Primarily based on the record of recent changes of the current particle in the two latest generations, the central location of the previous two generations of the particle was calculated, the role of which was to point out the current global optimal position. The paper, at the same time, discussed deeply a new learning factor and their impact on the new modified algorithm. The experimental simulation results show that global searching ability, convergence rate, accuracy and stability of the new algorithm have been improved significantly.
出处 《计算机应用》 CSCD 北大核心 2010年第2期472-475,共4页 journal of Computer Applications
关键词 粒子群算法 中心位置 学习因子 收敛速度 稳定性 Particle Swarm Optimization (PSO) central location learning factor convergence rate stability
  • 相关文献

参考文献8

  • 1KENNEDY J, EBERHART R. Particle swarm optimization [ C]//Proeeedings of the 1995 IEEE International Conference on Neural Networks. Washington, DC: IEEE Computer Society, 1995:1942-1948. 被引量:1
  • 2SE0 J H, IM C H, HEO C G, et al. Mutimodal function optimiza-tion based on particle swarm optimization [ J]. IEEE Transactions on Magnetics, 2006, 42(4) : 1095 - 1098. 被引量:1
  • 3YI DA, GE XIU-YUN. An improved PSO-based ANN with simulated annealing technique [J]. Neurocomputing, 2005, 63(11): 527-533. 被引量:1
  • 4SOUSA T, SILVA A, NEVES A. A particle swarm data miner [C]// EPIA'03: Proceedings of the llth Portuguese Conference on Artificial Intelligence, LNAI 2902. Berlin: Springer-Verlag, 2003:43-53. 被引量:1
  • 5GAING Z L. A particle swarm optimization approach for optimum design of PID controller in AVR system [ J]. IEEE Transactions on Energy Conversion, 2004, 19(2): 384-391. 被引量:1
  • 6FRANKEN N, ENGELBRECHT A P. Particle swarm optimization approaches to coevolve strategies for the iterated prisoner's dilemma [ J]. IEEE Transactions on Evolutionary Computation, 2005, 9(6) : 562 - 579. 被引量:1
  • 7SOUSA T, SILVA A, NEVES A. Particle swarm based data mining algorithms for classification tasks [ J]. Parallel Computing, 2004, 30(5/6) : 767 -783. 被引量:1
  • 8李剑,王乘.一种改进的自适应微粒群优化算法[J].华中科技大学学报(自然科学版),2008,36(3):118-121. 被引量:11

二级参考文献8

  • 1Kennedy J, Eberhart R C. Particle swarm optimization[C] // Proceedings of IEEE International Conference on Neural Networks. Piscataway: IEEE, 1995:1942-1948. 被引量:1
  • 2Shi Y H, Eberhart R C. Empirical study of particle swarm optimization[C] // Proceedings of IEEE Congress on Evolutionary Computation. Piscataway: IEEE, 1999: 1945-1950. 被引量:1
  • 3Shi Y, Eberhart R. Fuzzy adaptive particle swarm optimization[C] // Proceedings of Congress on Evolutionary Computation. Piscataway: IEEE, 2001: 79- 85. 被引量:1
  • 4Clerc M. The swarm and the queen: towards a deterministic and adaptive particle swarm optimization[C] //Proceedings of 1999 Congress Evolutionary Computation. Piscataway: IEEE, 1999: 1951-1957. 被引量:1
  • 5Ratnaweera A, Halgamuge S K,Watson H C. Selforganizing hierarchical particle swarm optimizer with time-varying acceleration coefficients[J]. IEEE Trans on Evolutionary Computation, 2004, 8(3):240-255. 被引量:1
  • 6Stacey A, Jancic M, Grundy I. Particle swarm optimization with mutation[C] // Proceeding of the 2003 Congress on Evolutionary Computation (CEC' 03). Canbella: IEEE, 2003:1425-1430. 被引量:1
  • 7Suganthan P N. Particle swarm optimizer with neighborhood operator[C] // Proceedings of the Congress on Evolutionary Computation. Piscataway: IEEE, 1999:1958-1962. 被引量:1
  • 8Takahama T, Sakai S. Solving constrained optimization problems by the ε constrained particle swarm optimizer with adaptive velocity limit control[C] // Proceedings of IEEE Congress on Evolution Computation. Piscataway: IEEE, 2006:308-315. 被引量:1

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部