期刊文献+

基于多阈值的非下采样轮廓波图像去噪方法 被引量:12

Image Denoising Method for Nonsubsampled Contourlet Based on Multi-threshold
下载PDF
导出
摘要 非下采样轮廓波变换(NSCT)是一种新的多尺度几何分析工具,具有平移不变性、多方向性和各向异性。与小波变换相比,NSCT能更好地表示图像中的边缘等信息。对合成孔径雷达图像进行NSCT分解,考虑其系数统计特性,基于BayesShrink对每个分解层的各个子带做多层阈值估计和软阈值收缩处理。实验结果表明,采用该方法得到的图像在视觉效果和客观衡量指标上均符合要求。 As a new multi-scale geometric analysis tool, Nonsubsampled Contourlet Transform(NSCT) has the characteristics of shift-invariance, multi-directionality and anisotropy. NSCT has the better representation of informations such as edges than wavelet transform. This paper decomposes Synthetic Aperture Radar(SAR) image by NSCT and considers its coefficients statistic characteristic. Based on BayesShrink, the multi-threshold estimation and the soft-threshold shrinkage in each subband of every decomposition layer are accomplished. Experimental results show that by using this method, the image meets the need of visual effect and objective measures.
出处 《计算机工程》 CAS CSCD 北大核心 2010年第4期200-201,204,共3页 Computer Engineering
基金 国家自然科学基金资助项目(60802061 60702062) 河南省创新型科技人才队伍建设工程基金资助项目(084100510012) 河南省教育厅自然科学基金资助项目(2008B510001) 陕西省自然科学基金资助项目(2007F09)
关键词 合成孔径雷达 图像去噪 非下采样轮廓波变换 多阈值 Synthetic Aperture Radar(SAR) image denoising Nonsubsampled Contourlet Transform(NSCT) multi-threshold
  • 相关文献

参考文献10

  • 1Goodman J W. Some Fundamental Properties of Speckle[J]. Journal Optical Society America, 1976, 66(11): 11451150. 被引量:1
  • 2李卫斌,何明一,解争龙,焦李成.基于CLi多小波的SAR图像压缩去噪混合方法[J].计算机科学,2007,34(8):236-239. 被引量:1
  • 3刘晨华,冯象初,张力娜.基于离散小波阈值的偏微分图像去噪[J].计算机工程,2008,34(15):196-198. 被引量:8
  • 4Achim A, Tsakalides P, Bezerianos A. SAR Image Denoising Via Bayesian Wavelet Shrinkage Based on Heavy-tailed Modeling[J]. IEEE Trans. on Geoscience and Remote Sensing, 2003, 41(8): 1773-1784. 被引量:1
  • 5Mirth N D, Vetterli M. The Contourlet Transform: An Efficient Directional Multisolution Image Representation[J]. IEEE Trans. on Image Processing, 2005, 14(12): 2091-2106. 被引量:1
  • 6Arthur L D C, Zhou Jianping, Minh N D. The Nonsubsampled Contourlet Transform: Theory, Design and Application[J]. IEEE Trans. on Image Processing, 2006, 15(10): 3089-3101. 被引量:1
  • 7Zhou Zuofeng, Shui Penglang. Contourlet-based Image Denoising Algorithm Using Directional Windows[J]. Electronics Letters, 2007, 43(2): 92-93. 被引量:1
  • 8YANG Xiao-Hui JIAO Li-Cheng.Fusion Algorithm for Remote Sensing Images Based on Nonsubsampled Contourlet Transform[J].自动化学报,2008,34(3):274-281. 被引量:25
  • 9Chang S G, Yu Bin, Vetterli M. Spatially Adaptive Wavelet Thresholding with Context Modeling for Image Denoising[C]// Proceedings of IEEE International Conference on Image Processing. [S, l.]: IEEE Press, 2000: 1522-1531. 被引量:1
  • 10Starck J, Candes J, Donoho D L. The Curvelet Transform for Image Denoising[J].IEEE Transactions on Image Processing, 2002, 11(6): 131-141. 被引量:1

二级参考文献37

  • 1李卫斌,张书玲,焦李成.一类新的多子波在图像压缩中的应用[J].咸阳师范学院学报,2004,19(6):1-5. 被引量:1
  • 2崔锦泰 程正兴(译).小波分析导论[M].西安:西安交通大学出版社,1995.. 被引量:324
  • 3Tan H H,S Li-Xi,Tham J Y.New biorthogonal multiwavelets for image compression.Signal Processing,1999,79:45-65 被引量:1
  • 4Mvogo J,Mercier G,et al.A combined speckle noise reduction and compression of SAR images using a multiwavelet based method to improve codec performance.perso-iti.enst-bretagne.fr/-mercierg/ articles/s03p1224-mvogo.pdf 被引量:1
  • 5Strela V,Heller P N,Strang G,et al.The Application of Multiwavelet Filterbanks to Image Processing.IEEE Trans.on Image Processing,1999,8(4):548-562 被引量:1
  • 6Xia X G,Suter B G.Vector-valued Wavelets and Vector Filter Banks.IEEE Trans on Signal Processing,1996,44(3):508-517 被引量:1
  • 7Jiang Qingtang.On the Design of Multifilter Banks and Orthonormal Multiwavelet Bases.IEEE Trans on Signal Processing,1998,46(12):3292-3303 被引量:1
  • 8Strang G,Strela V.Short Wavelets and Matrix Dilation Equations.IEEE Trans on Signal Processing,1995,43(1):108-114 被引量:1
  • 9Zhang Xi,Muguruma T,Yoshikawa T.Design of orthonormal symmetric wavelet filters using real allpass filters.Signal Processing,2000,80:1551-1559 被引量:1
  • 10Lawton W.Applications of Complex Valued Wavelet Transforms to Subband Decomposition.IEEE Trans on Signal Processing,1993,41(12):3566-3568 被引量:1

共引文献31

同被引文献121

引证文献12

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部