期刊文献+

摆线轮结构件高速铣削过程中铣削力的有限元仿真分析 被引量:7

Finite Element Simulation of Milling Force for Component with Cycloid Gear Profile During High Speed Milling Process
下载PDF
导出
摘要 为了分析高速铣削过程中摆线轮结构件的铣削力的变化规律,基于复杂的摆线轮轮廓,建立了高速铣削过程中该轮廓的铣削力有限元模型。该模型针对摆线轮齿廓加工的工艺特点:即硬度高、壁薄和轮廓复杂等,借助有限元软件DEFORM-3D,将高速铣削过程中的摆线轮齿廓分为3段,根据每一段的几何形状不同,结合材料性能、本构关系以及剪切断裂分离理论,建立不同切削方式的切削力仿真模型并进行仿真,仿真结果表明:摆线齿廓的铣削力呈现出周期性的变化规律,并且铣削合力随铣削速度的增加而减小,工件受到的径向力随进给量的增大而显著增大,切向铣削力受进给量的影响较小。该铣削力模型经试验验证,试验结果与仿真结果具有较好的一致性。 To analyze the problem of milling force for a component with cycloid gear prohle dunng high speed milling process, a finite element model for determining the milling model is based on identifying key processing characteristics that force, is built with the software DEFORM-3D. The influence the milling force of workpiece with cycloid profile, such as hard material, thin-wall and component with complex profile. Based on the analysis of the three profile curves of workpiece, a simulating model suitable for milling force in the machining process is proposed by taking into account the changes of the profile curves, material characteristics, eonstitutive relation for materials and shear break separating theory. When machining along the workpiece length the simulating results show that the mill- ing force changes periodically and has a decreasing trend with the increase of the milling speed. With the increase of the total force, the component force along the radial direction has a obviously increasing trend and the component force along the tangential direction does not change. Finally, the finite element force model has been experimentally validated and the results show good agreement between predicted and measured force values.
出处 《机械科学与技术》 CSCD 北大核心 2010年第1期17-23,共7页 Mechanical Science and Technology for Aerospace Engineering
基金 天津市高校发展基金项目(20051002)资助
关键词 铣削力仿真 摆线轮廓 有限元方法 高速铣削 milling forces simulation profile with cycloid gear finite element method high speed milling
  • 相关文献

参考文献12

  • 1方刚,曾攀.金属正交切削工艺的有限元模拟[J].机械科学与技术,2003,22(4):641-645. 被引量:61
  • 2董辉跃,柯映林,成群林.铝合金三维铣削加工的有限元模拟与分析[J].浙江大学学报(工学版),2006,40(5):759-762. 被引量:28
  • 3Altan T, Ceretti E, Lucchi M. FEM simulation of orthogonal cutting: serrated chip formation[ J]. Journal of Materials Processing Technology, 1999,95 : 17 - 26. 被引量:1
  • 4Ozel T, Ahan T. Process simulation using finite element methodprediction of cutting forces, tool stresses and temperatures in high-speed fiat end milling[ J]. International Journal of Machine Tools & Manufacture, 2000,40:713 -738. 被引量:1
  • 5Zorev N N. Inter-relationship between shear process oceuing along tool face and on shear plane in metal cutting[ A]. International Research in Production Engineering [ C ] , New York: ASME, 1963:42-49. 被引量:1
  • 6Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperature [ A ]. Seventh International Sympo-sium on Ballistics [C], Hague, Netherlands, 1983:541 -547. 被引量:1
  • 7Umbrello D, Jiang H, Shivpuri R. Hardness-basod flow stress and fracture models for numerical simulation of hard machining AISI 52100 bearing steel[J]. Materials Science and Engineering, 2004 ,A374:90 - 100. 被引量:1
  • 8Ceretti E, Lucchi M, Altan T. FEM simulation of orthogonal cutting: serrated chip formation[J]. Journal of Materials Processing Technology, 1999,95 : 17 - 26. 被引量:1
  • 9Ng E G, Aspinwall D K, Brazil D. Modelling of temperature and forces when orthogonally machining hardened steel [ J ]. International Journal of Machine Tools & Manufacture, 1999,39:885 -890. 被引量:1
  • 10文东辉,刘献礼,严复钢,胡荣生.用PCBN刀具精密切削GCr15淬硬轴承钢[J].工具技术,2002,36(3):11-13. 被引量:11

二级参考文献60

  • 1Usui E, Shirakashi T. Mechanics of Machining--from Descriptive to Predictive Theory, on the Art of Cutting Metals--75 Years Later. ASME--PED,1982,7.13~15. 被引量:1
  • 2Komvopoulos K, Erpenbeek S A. Finite Element Modeling of Orthogonal Cutting. ASME J. Eng.Ind.,1991,113:253~267. 被引量:1
  • 3Zhang B, Bagchi A. Finite Element Simulation of Chip Formation and Comparison with Machining Experiment. ASME J. Eng. Ind. ,1994,116.289~297. 被引量:1
  • 4Shih A J. Finite Element Simulation of Orthogonal Metal Gutting. ASME J. Eng. Ind. ,1995,117.84~93. 被引量:1
  • 5Lin Zoneching, Lin Yeouyih. A Study of an Oblique Cutting Model. Journal of Materials Processing Technology, 1999,86:119~130. 被引量:1
  • 6Carroll J T, Strenkowski J S, Finite Element Models of Orthogonal Cutting with Application to Single Point Diamond Turning. Int. J. Mech. Sci.,1988,30:899~920. 被引量:1
  • 7Xie J Q, Bayoumi A E, Zbib H M. A Study on Shear Banding in Chip Formation of Orthogonal Machining. Int. J. Mach. Tools Manuf., 1996,36:835~847. 被引量:1
  • 8Hashemi J, Tseng A A, Chou P C. Finite Element Modeling of Segmental Chip Formation in High Speed Orthogonal Cutting. J. Mater. Eng. Perform. ,1994,3:712~721. 被引量:1
  • 9Iwata K, Osakada A, Terasaka Y. Process Modeling of Orthogonal Cutting by Rigid--plastic Finite Element Method. J. Eng. Mater. Technol. ,1984,106:132~138. 被引量:1
  • 10Ceretti J E, Fallbehmer P, Wu W T, et al. Application of 2D FEM on Chip Formation in Orthogonal Cutting. J. Mater. Process. Technol. , 1996,59:169~181. 被引量:1

共引文献154

同被引文献55

引证文献7

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部