期刊文献+

表面式永磁电机齿槽转矩解析模型比较 被引量:12

Comparision Alternate Analytical Models for Predictiong Cogging Torque in Surface-mounted Permanent Magnet Machines
下载PDF
导出
摘要 高效率、高转矩密度特性使得永磁电机的应用越来越广泛,然而永磁电机的齿槽转矩却降低了电机的性能。根据对槽漏磁导(是否考虑槽漏磁)、空载气隙磁密(是否考虑永磁体之间的漏磁、是否考虑圆周曲率)的不同处理和采用不同的计算方法(能量法、齿壁受力),给出了齿槽转矩的六种解析模型,并进行了比较。根据模型,得到了三种槽数/极数(18/24、9/8、24/16)电机的齿槽转矩的波形、使齿槽转矩最小化的优化极弧系数和优化槽开口,并与有限元(FEA)进行了比较。结果表明计及槽漏磁和永磁体间的漏磁大大提高了模型的精确度,而根据齿壁受力计算得到的齿槽转矩比能量法得到的齿槽转矩更加精确。 Permanent magnet brushless machines exhibit high efficiency and torque density, and have already been widely employed. However, one of their disadvantages is the inherent cogging torque, which is a kind of torque ripple and always desirable to minimize. Six analytical models for cogging torque prediction are presented and compared in this paper. These analytical models are progressively refined and differ in methods for calculating the permeance due to stator slotting (i. e. with/without considering the slot leakage), the airgap field distribution due to permanent magnets (i. e. with/without considering the inter-pole leakage and/or curvature effect), and the cogging torque (based on the energy method or the net lateral force acting on the stator teeth). Developed analytical models are used to predict the cogging torque waveforms, the optimal magnet pole-arc to pole-pitch ratio and the optimal slot opening in three machines having different combinations of slot number and pole number, viz. 18/24, 9/8, and 24/16, respectively, and are extensively validated by the finite element analyses. It shows that accounting for the slot leakage and/or magnet interpole leakage can significantly improve the accuracy of cogging torque prediction, while the method for predicting the cogging torque based on the calculation of net lateral force acting on the stator teeth exhibits a higher accuracy than that based on the energy method.
出处 《微电机》 北大核心 2010年第1期10-15,共6页 Micromotors
关键词 模型 齿槽转矩 永磁电机 转矩波动 Analytical model Cogging torque Permanent magnet machines Torque ripple
  • 相关文献

参考文献28

  • 1C. C. Chan. The state-of-the-art of electric and hybrid vehicles [C]. Proc. IEEE, 2002, 90(2): 247-275. 被引量:1
  • 2Z. Q. Zhu, D. Howe. Electrical machines and drives for electric, hybrid, and fuel eell vehicles [ C ]. Proc. IEEE, 2007, 95(4) : 746-765. 被引量:1
  • 3S. M. Hwang, J. B. Eom, Y. H. Jung, et al. Various design techniques to reduce cogging torque by controlling energy variation in permanent magnet motors [ J ]. IEEE Trans. on Magnetics, 2001, 37(4): 2806-2809. 被引量:1
  • 4Z. Q. Zhu, D. Howe, C. C. Chan. Improved analytical model for predicting the magnetic field distribution in brushless permanent-magnet machines[J]. IEEE Trans. on Magnetics, 2002, 38 ( 1 ) : 229-238. 被引量:1
  • 5Z. Q. Zhu, D. Howe. Analytical prediction of the cogging torque in radial-field permanent magnet brushless motors [J]. IEEE Trans. on Magnetics, 1992, 28(2) : 1371-1374. 被引量:1
  • 6C. C. Hwang, S. B. John, S. S. Wu. Reduction of cogging torque in spindle motors [ J ]. IEEE Trans. on Magnetics, 1998, 34(2): 468-470. 被引量:1
  • 7Z. Q. Zhu, S. Ruangsinchaiwanich, N. Schofield, et al. Reduction of cogging torque in interior-magnet brushless machines [J]. IEEE Trans. on Magnetics, 2003, 39(5) : 3238-3240. 被引量:1
  • 8Z. Q. Zhu, S. Ruangsinchaiwanich, Y. Chen, etal. Evaluation of superposition technique for calculating cogging torque in permanent-magnet brushless machines[ J]. IEEE Trans. on Magnetics, 2006, 42(5): 1597-1603. 被引量:1
  • 9Z. Q. Zhu, D. Howe. Influence of design parameters on cogglng torque in permanent magnet motors [ J ]. IEEE Trans. on Energy Conversion, 2000, 15(4) : 407-412. 被引量:1
  • 10B. Ackermann, J. H. H. Janssen, R. Sottek, et al. New technique for reducing cogging torque in a class of brushless DC motors[C], IEE Proc. -B, 1992, 139(4): 315-320. 被引量:1

同被引文献83

引证文献12

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部