期刊文献+

基于改进属性加权的朴素贝叶斯分类模型 被引量:12

Naive Bayesian classifier model based on improved weighted attributes
下载PDF
导出
摘要 构造了一种新的属性间相关性度量方法,提出了改进属性加权的朴素贝叶斯分类模型。经实验证明,提出的朴素贝叶斯分类模型明显优于张舜仲等人提出的分类模型。 To improve attribute weighted the naive Bayesian classifier model,a new measurement method of the inter-related weighted attributes is structured.The experiment proves that the naive Bayesian classifier model is superior to the classification model proposed by Zhang Shun-zhong et al.
作者 李方 刘琼荪
出处 《计算机工程与应用》 CSCD 北大核心 2010年第4期132-133,141,共3页 Computer Engineering and Applications
关键词 属性加权 朴素贝叶斯 分类模型 相关性度量 attribute weighted naive Bayesian classification model relevant measure
  • 相关文献

参考文献2

二级参考文献24

  • 1李旭升,郭耀煌.基于多重判别分析的朴素贝叶斯分类器[J].信息与控制,2005,34(5):580-584. 被引量:8
  • 2M Pankaj and W W Benjamin. Artificial neural networks:concepts and theory[M]. Los Alamitos, Calif. : IEEE Computer Society Press,1992. 被引量:1
  • 3J R Quinlan. C4.5: programs for machine learning[M]. San Mateo, Calif. : Morgan Kaufmann Publishers,1993. 被引量:1
  • 4R O Duda, P E Hart, D G Stork. Pattern Classification(2nd Edition) [ M]. Wiley - Interscience. 2000. 被引量:1
  • 5P Langley, W Iba and K Thompson. An analysis of bayesian classifiers[ C ]. In AAAI ' 90,1992. 223 - 228. 被引量:1
  • 6M Jaeger. Probabilistic Classifiers and the Concepts They Recognize[ C]. ICML 2003. 266 - 273 被引量:1
  • 7N Friedman, D Geiger and M Goldszmidt. Bayesian Network Classifiers[J]. Machine Learning, Kluwer Academic Publishers, Boston, 1997,29:131 - 163. 被引量:1
  • 8I Kononenko. Semi naive Bayesian classifier[C].Proceedings of European Conference on Artificial Intelligence,1991. 206 - 219. 被引量:1
  • 9P Langley and S Sage. Induction of selective Bayesian classifiers[C]. Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence. 1994, pp. 339 - 406.Seattle, WA: Morgan Kaufmann. 被引量:1
  • 10G I Webb & M J Pazzani. Adjusted probability naive Bayesian induction[C]. Proceedings of the Eleventh Australian Joint Conference on Artificial Intelligence. 1998, pp. 285 - 295.Berlin: Springer - Verlag. 被引量:1

共引文献48

同被引文献76

引证文献12

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部