期刊文献+

基于属性相关性分析的贝叶斯分类模型 被引量:11

Bayesian Classification Model Based on Attribute Correlation Analysis
下载PDF
导出
摘要 朴素贝叶斯分类器是一种简单而有效的概率分类方法,然而其属性独立性假设在现实世界中多数不能成立。为改进其分类性能,近几年已有大量研究致力于构建能反映属性之间依赖关系的模型。本文提出一种向量相关性度量方法,特征向量属于类的的概率由向量相关度及其属性概率计算。向量相关度可通过本文给出的一个公式进行估计。实验结果表明,使用这种方法构建的分类模型其分类性能明显优于朴素贝叶斯,和其他同类算法相比也有一定提高。 Naive Bayes classifier is a simple and effective classification method based on probability theory, but its attribute independence assumption is often violated in the real world. To improve the performance of Bayes classifiers, in recent years, a great deal of research has been done on constructing models which can express dependence among attributes. This paper presented a method for measaring the correlation of a vector. The probability of a character vector belonging to a class is calculated by vector's correlation degree and the probability of its properties, and the vector correlation degree can be computed via a formula given in the paper. Experiments showed that the classifier built by this method achieved higher accuracy than NB and other similar algorithm.
出处 《情报学报》 CSSCI 北大核心 2007年第2期271-274,共4页 Journal of the China Society for Scientific and Technical Information
关键词 分类模型 贝叶斯定理 属性相关 向量相关度 classification model, Bayes theorem, attribute correlation, vector' s correlation degree
  • 相关文献

参考文献9

  • 1Langley P,Iba W,Thomp son K.An analysis of Bayesian classifiers[C]∥Proceedings of the Tenth National Conference on Artificial Intelligence.Menlo Park,USA:AAA I Press,1992:223-228. 被引量:1
  • 2Fried N,Geiger D,Goldszmidt M.Bayesian network classifiers[J].Machine Learning,1997,29 (2-3):131-163. 被引量:1
  • 3Keogh E J,Pazzani M J.Learning augmented Bayesian classifiers:a comparison of distribution-based and classification-based approaches[C]∥Heckerman D E,Whittaker J,eds.Proceedings of the Uncertainty'99:The 7th Int'l Workshop on Artificial Intelligence and Statistics.San Francisco:Morgan Kaufmann Publishers,1999:225-230. 被引量:1
  • 4David Maxwell.Learning equivalence classes of Bayesian network structures[J].Machine Learning,2002 (2):445-498. 被引量:1
  • 5Cheng J,Greiner R.Comparing Bayesian network classifiers[C]∥Laskey K B,Prade H,eds.Proceedings of the 15th Conference.on Uncertainty in Artificial Intelligence.San Francisco:Morgan Kaufmann Publishers,1999:101-108. 被引量:1
  • 6Chickering D M,Geiger D,Heckerman D.Learning Bayesian networks is NP-complete[M]∥Fisher D H,Lenz H J,eds.Learning from Data:Artificial Intelligence and Statistics.New York:Springer-Verlag,1996:121-130. 被引量:1
  • 7Newman D J,Hettich S,Blake C L,Merz C J.UCI Repository of Machine Learning Databases[EB/OL].http://www.ics.uci.edu/~mlearn/MLRepository.html,1998. 被引量:1
  • 8石洪波,王志海,黄厚宽,励晓健.一种限定性的双层贝叶斯分类模型[J].软件学报,2004,15(2):193-199. 被引量:44
  • 9李旭升,郭耀煌.基于多重判别分析的朴素贝叶斯分类器[J].信息与控制,2005,34(5):580-584. 被引量:8

二级参考文献27

  • 1Friedman N,Geiger D,Goldszmidt M.Bayesian network classifiers.Machine Learning,1997,29(2-3):131-163. 被引量:2
  • 2Langley P,Iba W,Thompson K.An analysis of Bayesian classifiers.In:Rosenbloom P,Szolovits P,eds.Proc.of the 10th National Conf.on Artificial Intelligence.Menlo Park:AAAI Press,1992.223-228. 被引量:1
  • 3Kononenko I.Seminaive Bayesian classifier.In:Kodratoff Y,ed.Proc.of the 6th European Working Session on Learning.New York:Springer-Verlag,1991.206-219. 被引量:2
  • 4Pazzani MJ.Searching for dependencies in Bayesian classifiers.In:Fisher D,Lenz HJ,eds.Learning from Data:Artificial Intelligence and Statistics V.New York:Springer-Verlag.1996.239-248. 被引量:1
  • 5Langley P,Sage S.Induction of selective Bayesian classifiers.In:Mantaras RL,Poole DL,eds.Proc.of the 10th Conf.on Uncertainty in Artificial Intelligence.San Francisco:Morgan Kaufmann Publishers,1994.399-406. 被引量:2
  • 6Webb GI,Pazzani MJ.Adjusted probability naive Bayesian induction.In:Antoniou G,Slaney JK,eds.Proc.of the 11th Australian Joint Conf.on Artificial Intelligence.Berlin:Springer-Verlag,1998.285-295. 被引量:2
  • 7Kohavi R.Scaling up the accuracy of Naive-Bayes classifiers:A decision-tree hybrid.In:Simoudis E,Han J,Fayyad UM,eds.Proc.of the 2nd Int'l Conf.on Knowledge Discovery and Data Mining.Menlo Park:AAAI Press,1996.202~207. 被引量:2
  • 8Keogh EJ,Pazzani MJ.Learning augmented Bayesian classifiers:A comparison of distribution-based and classification-based approaches.In:Heckerman DE,Whittaker J,eds.Proc.of the Uncertainty'99:The 7th Int'l Workshop on Artificial Intelligence and Statistics. 被引量:1
  • 9Cheng J,Greiner R.Comparing Bayesian network classifiers.In:Laskey KB,Prade H,eds.Proc.of the 15th Conf.on Uncertainty in Artificial Intelligence.San Francisco:Morgan Kaufmann Publishers,1999.101-108. 被引量:2
  • 10Chickering DM,Geiger D,Heckerman D.Learning Bayesian networks is NP-complete.In:Fisher DH,Lenz HJ,eds.Learning from Data:Artificial Intelligence and Statistics V.New York:Springer-Verlag,1996.121-130. 被引量:1

共引文献50

同被引文献47

引证文献11

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部