期刊文献+

基于共同评分和相似性权重的协同过滤推荐算法 被引量:44

Collaborative Filtering Recommendation Algorithm Based on Co-ratings and Similarity Weight
下载PDF
导出
摘要 协同过滤推荐算法是在电子商务推荐系统中应用最成功的推荐技术之一。提出了一种基于共同评分和相似性权重的协同过滤推荐算法。该算法选择用户的共同评分数据计算用户的相似性,选择项目被用户共同评分的数据计算项目的相似性,再分别计算基于用户以及项目算法的预测评分,然后通过相似性权重结合两者得到最终的预测结果,最后再根据预测结果产生推荐。实际数据的实验结果表明,提出的算法显著提高了预测准确度,从而提高了推荐质量。 Collaborative filtering recommendation algorithm is one of the most successful technologies in the e-com- merce recommendation system. This paper presented a collaborative filtering algorithm based on co-ratings and similarity weight. First, the co-ratings were selected to compute the similarity between users or items. Most importantly, the algo- rithm acquiring the last prediction result was acquired by combining prior predicting rating with similarity weight, from which recommendation was produced. The experimental results in real data show this algorithm can consistently achieve better prediction accuracy, thereby brings better recommendation quality.
出处 《计算机科学》 CSCD 北大核心 2010年第2期99-104,共6页 Computer Science
基金 国家自然科学基金(60573097 60773198 60703111) 广东省自然科学基金(05200302 06104916) 广州市科技计划项目(2007Z3-D3071) 高等学校博士学科点专项科研基金(20050558017) 新世纪优秀人才支持计划(NCET-06-0727)资助
关键词 电子商务 推荐系统 协同过滤 共同评分 相似性权重 E-commerce,Recommendation system,Collaborative filtering,Co-rating,Similarity weight
  • 相关文献

参考文献20

  • 1Goldberg D, Nichols D, Oki B M, et al. Using collaborative filtering to weave an information Tapestry[J]. Communications of the ACM,1992,35(12):61-70. 被引量:1
  • 2Resnick P, Iacovou N, Suchak M, et al. GroupLens: An open architecture for collaborative filtering of netnews[C]//Proc, of the ACM CSCW' 94 Conf. on Computer Supported Cooperative Work. Chapel Hill:ACM, 1994:175-186. 被引量:1
  • 3Shardanand U,Mages'P. Social information filtering:Algorithms for automating "Word of Mouth"[C]//Proc. of the ACM CHI' 95 Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995:210-217. 被引量:1
  • 4Hill M, Stead L, Rosenstein M, et al. Recommending and evaluating choices in a virtual community of use[C]//Proc, of the ACM CHI'95 Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995 : 194-201. 被引量:1
  • 5Claypool M, Gokhale A, Miranda T, et al. Combining contentbased and collaborative filters in an online newspaper [C]// ACM SIGIR' 99 Workshop on Recommender Systems: Algorithms and Evaluation. Berkeley: ACM, 1999. 被引量:1
  • 6Linden G, Smith B, York J. Amazon. com recommendations: Itern-to-item collaborative filtering[J]. IEEE Internet Computing,2003,7(1) :76-80. 被引量:1
  • 7Holmquist L E,Jacobsson M, Rost M. When media gets wise: Collaborative filtering with mobile media agents [C]//Proc. of the IUI 2006, the 10^th Int'l Conf. on Intelligent User Interfaces. Sydney. http://portal. acm.org/, 2006. 被引量:1
  • 8Park S T, Pennock D M. Applying collaborative filtering techniques to movie search for better ranking and browsing[C]// Proc. of the 13th ACM SIGKDD International Conf. on Knowledge Discovery and Data Mining. New York: ACM, 2007 : 550- 559. 被引量:1
  • 9Sarwar B, Karypis G, Konstan J, et al. Item-based collaborative filtering recommendation algorithms [C]//Proc. of 10^th Int'l World Wide Web Conf. New York: ACM Press, 2001:285-295. 被引量:1
  • 10Xue G R,Lin C X,Yang Q,et al. Scalable collaborative filtering using cluster-based smoothing[C]//Proc, of the 2005 ACM SIGIR Conf. New York: ACM Press, 2005:114-121. 被引量:1

二级参考文献14

  • 1Brccsc J, Hcchcrman D, Kadic C. Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI'98). 1998.43~52. 被引量:1
  • 2Goldberg D, Nichols D, Oki BM, Terry D. Using collaborative filtering to weave an information tapestry. Communications of the ACM, 1992,35(12):61~70. 被引量:1
  • 3Resnick P, lacovou N, Suchak M, Bergstrom P, Riedl J. Grouplens: An open architecture for collaborative filtering of netnews. In:Proceedings of the ACM CSCW'94 Conference on Computer-Supported Cooperative Work. 1994. 175~186. 被引量:1
  • 4Shardanand U, Mats P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proceedings of the ACM CHI'95 Conference on Human Factors in Computing Systems. 1995. 210~217. 被引量:1
  • 5Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proceedings of the CHI'95. 1995. 194~201. 被引量:1
  • 6Sarwar B, Karypis G, Konstan J, Riedl J. Item-Based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International World Wide Web Conference. 2001. 285~295. 被引量:1
  • 7Chickering D, Hecherman D. Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables.Machine Learning, 1997,29(2/3): 181~212. 被引量:1
  • 8Dempster A, Laird N, Rubin D. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 1977,B39:1~38. 被引量:1
  • 9Thiesson B, Meek C, Chickering D, Heckerman D. Learning mixture of DAG models. Technical Report, MSR-TR-97-30, Redmond:Microsoft Research, 1997. 被引量:1
  • 10Sarwar B, Karypis G, Konstan J, Riedl J. Analysis of recommendation algorithms for E-commerce. In: ACM Conference on Electronic Commerce. 2000. 158~167. 被引量:1

共引文献596

同被引文献333

引证文献44

二级引证文献301

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部