期刊文献+

随机工艺变化下互连线ABCD参数建模与仿真 被引量:1

Modeling and Simulating the ABCD Parameters of Interconnects in the Presence of Random Process Variations
下载PDF
导出
摘要 集成电路的不断发展使得互连线的随机工艺变化问题已经成为影响集成电路设计与制造的重要因素。基于电报方程建立了工艺变化下互连线的分布参数随机模型,推导出互连线ABCD参数满足的随机微分方程组,并提出了基于蒙特卡洛法的互连线ABCD参数统计分析方法,通过对ABCD参数各参量系数的正态性进行偏度-峰度检验,给出了最差情况估计。实验结果表明所提出的互连线随机模型及统计分析方法可以对工艺变化下的互连线传输性能进行有效的评估。 With the great development of Integrated Circuits(IC),random process variations of interconnects has been an important factor which impacts the IC design and manufacture.On the basis of telegraph equation,the stochastic interconnect model with distributed parameters is proposed in the presence of process variations.The stothastic differential equation of the ABCD parameters is derived,and Monte Carlo method based statistical analysis method for the ABCD parameters is presented.Jarque-Bera test is made for the normality,and the worst-case estimation is given.Experimental results demonstrate that the proposed stochastic model and the statistical analysis method can evaluate the transmission performance of interconnects in the presence of process variations effectively.
出处 《南京邮电大学学报(自然科学版)》 2009年第6期85-90,共6页 Journal of Nanjing University of Posts and Telecommunications:Natural Science Edition
基金 南京邮电大学引进人才基金(NY207025)资助项目
关键词 互连线 电报方程 随机建模 随机微分方程 蒙特卡洛法 interconnects telegrapher s equation stochastic modeling stochastic differential equation Monte Carlo method
  • 相关文献

参考文献11

二级参考文献48

  • 1郝跃,荆明娥,马佩军.VLSI集成电路参数成品率及优化研究进展[J].电子学报,2003,31(z1):1971-1974. 被引量:8
  • 2钟万勰.暂态历程的精细计算方法[J].计算结构力学及其应用,1995,12(1):1-6. 被引量:174
  • 3LUO Zuying,CAI Yici,Sheldon X.-D Tan,HONG Xianlong,WANG Xiaoyi,PAN Zhu,FU Jingjing.Time-domain analysis methodology for large-scale RLC circuits and its applications[J].Science in China(Series F),2006,49(5):665-680. 被引量:13
  • 4骆祖莹,钟燕清.VLSI晶体管级时延模拟方法[J].计算机辅助设计与图形学学报,2006,18(12):1855-1860. 被引量:5
  • 5[4]International Technology Roadmap for Semiconductors 2002 update[ DB/OL ]. tech. Rep, Semiconductor industry association. http://public. itrs. net. 被引量:1
  • 6[5]Jess J. Parametric yield estimation for deep sub-micron VLSI circuits,integrated circuits and systems design[ A]. Proceedings. 15th Symposium on[C]. Porto Allegre, Brazil, 2002. (15) .387 - 388. 被引量:1
  • 7[6]J W Bandler, Chen S H. Circuit optimization:the state of the art [ J ].IEEE Trans Microwave Theory and Techniques, 1988, 36 ( 2 ): 424 -443. 被引量:1
  • 8[7]Martin haugh. Variance reduction (Ⅲ): Important Sampling, Monte Carlo simulation[ DB/OL]. IEOR E4703,2003. http://www. columbia. edu/~ mh2078/MCSspring03/notes09. pdf. 被引量:1
  • 9[8]Keramat M, Kielbasa R. Worst case efficiency of Latin hypercube sampling Monte Carlo (LHSMC) yield estimator of electrical circuits[ A ].Circuits and Systems, IEEE International Symposium[ C ]. Hong Kong,1997.3.1660 - 1663. 被引量:1
  • 10[9]Stephen W Director, Gary D Hachtel. Computationally efficient yield estimation procedures based on simplicial approximatio[ J]. IEEE Trans on CAS, 1978,25(3):121 - 129. 被引量:1

共引文献36

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部