摘要
利用矩阵的广义逆和广义奇异值分解,讨论了子矩阵约束下左右逆特征值问题及其拓广,给出了其有解的充分必要条件及在有解条件下的通解表达式,并得到了此问题的最佳逼近解,而且用数值算法来验证求最佳逼近解的有效性.
By the generalized inverse and the generalized singular-value decomposition, the problem of left and right inverse eigenvalue with a submatrix was studied, In addition, the sufficient and necessary conditions and the general solutions of the problem were given, and the optimal approximate solution was obtained. Numeral algorithm was given to show the effectiveness of the proposed method.
出处
《贵州大学学报(自然科学版)》
2009年第6期17-20,共4页
Journal of Guizhou University:Natural Sciences
基金
国家自然科学基金资助项目(10671026)
关键词
矩阵扩充
左右逆特征值问题
广义奇异值分解
最佳逼近
the expansion of matrices
left and fight inverse eigenvalue problems
generalized singular-value decomposition
optimal approximation