期刊文献+

一类子矩阵约束下矩阵反问题的拓广

A Generalization of a Class of Inverse Problem for Matrices with a Submatrix
下载PDF
导出
摘要 利用矩阵的广义逆和广义奇异值分解,讨论了子矩阵约束下左右逆特征值问题及其拓广,给出了其有解的充分必要条件及在有解条件下的通解表达式,并得到了此问题的最佳逼近解,而且用数值算法来验证求最佳逼近解的有效性. By the generalized inverse and the generalized singular-value decomposition, the problem of left and right inverse eigenvalue with a submatrix was studied, In addition, the sufficient and necessary conditions and the general solutions of the problem were given, and the optimal approximate solution was obtained. Numeral algorithm was given to show the effectiveness of the proposed method.
出处 《贵州大学学报(自然科学版)》 2009年第6期17-20,共4页 Journal of Guizhou University:Natural Sciences
基金 国家自然科学基金资助项目(10671026)
关键词 矩阵扩充 左右逆特征值问题 广义奇异值分解 最佳逼近 the expansion of matrices left and fight inverse eigenvalue problems generalized singular-value decomposition optimal approximation
  • 相关文献

参考文献9

  • 1C de Boor, G H Golub,The Numeral stable Reconstruction of a Jaeobi matrix from Spectral Data[ J]. Linear Algebra and Its Applications, 1987 (21) :245 - 260 . 被引量:1
  • 2彭振赞.几类约束矩阵方程问题和几类矩阵方程扩充问题[D].湖南:湖南大学数学与计量经济学院,2003. 被引量:1
  • 3Zhou Fu zhao, Xiong Pei yin. The Expansion of Real symmetric Matrix with Least - squares Constraint. The Proceeding of the Seventh International Conference on Matrix Theory and its Application [ M ]. Chengdu : World Academic Press ,2007:214 - 217. 被引量:1
  • 4Zhen-yunPeng,Xi-yanHu,LeiZhang.THE INVERSE PROBLEM OF CENTROSYMMETRICMATRICES WITH A SUBMATRIX CONSTRAINT[J].Journal of Computational Mathematics,2004,22(4):535-544. 被引量:9
  • 5Yongxin Yuan, Hua Dai. Inverse problem for symmetric matrices with a submatrix constraint [ J ]. Applied Numerical Mathematics 2006(4) :345 -354. 被引量:1
  • 6Lisha Gong,Xiyan Hu,Lei Zhang. The expansion problem of anti -symmetric matrix under a linear constraint and the optimal approximation[J]. Journal of computational and Applied Mathematics, 2006(197) :44-52. 被引量:1
  • 7周树荃,戴华编著..代数特征值反问题[M].郑州:河南科学技术出版社,1991:411.
  • 8张磊,谢冬秀.一类逆特征值问题[J].数学物理学报(A辑),1993,13(1):94-99. 被引量:45
  • 9Paige C C, Saunders M A. Towards a generalized singularvalue decomposition[ J ]. SIMA J. Nu - mer. Anal. , 1981 ( 18 ) : 398 - 405. 被引量:1

二级参考文献19

  • 1张磊,湖南数学年刊,1987年,1卷,58页 被引量:1
  • 2孙继广,计算数学,1987年,9卷,2期,206页 被引量:1
  • 3蒋正新,计算数学,1986年,8卷,1期,47页 被引量:1
  • 4L.R. Fletcher, An Inverse Eigenvalue Problem from Control Theory, in Numerical Treatment of Inverse problems for Differential and Integral Equations, eds. P. Deuflhard and E. Hairer,Birkhauser, Beston, 1983, 161-170. 被引量:1
  • 5W.M. Wonham, Linear Multivariable Control: A Geometric Approach, Springer-Verlag, 1979. 被引量:1
  • 6V. Barcilon, Inverse Problem for a Vibrating Beam, J. Appl. Math. Phys., 27 (1976), 346-358. 被引量:1
  • 7G.M.L. Gladwell, Inverse Problems in Vibration, Martinus Nijhoff, Dordrecht, The Netherlands,Boston, MA, 1986. 被引量:1
  • 8K.T. Jeseph, Inverse Eigenvalue Problem in Structural design, AIAA. J., 30 (1992), 2890-2896. 被引量:1
  • 9S. Friedland, The Reconstruction of a Symmetric Matrix from the spectral data, J. Math. Anal Applic., 71 (1979), 412-422. 被引量:1
  • 10S.Q. Zhou, H.Dai. The Algebraic Inverse Eigenvalue Problem (in Chinese), Henan Science and Technology Press, Zhengzhou, Claina, 1991. 被引量:1

共引文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部