期刊文献+

求解旅行商问题的几种智能算法 被引量:12

Several Intelligent Algorithms for Solving Traveling Salesman Problem
下载PDF
导出
摘要 旅行商问题(TSP)是一个典型的组合优化问题,易于描述却难于求解。对于大规模TSP问题,目前仍未有非常有效的方法,如何快速有效的求解TSP问题有着重要的理论价值和实际意义。文章介绍了什么是TSP,论述了目前求解旅行商问题较为有效的六种智能算法(遗传算法、蚁群算法、Hopfield神经网络算法、模拟退火算法、人工免疫算法、混合优化算法),并简单阐述了其优缺点,给出了未来针对TSP问题的研究重点。 Traveling Salesman Problem (TSP) is a typical combination optimization problem, which is easy to be described and hard to be solved. For massive TSP, there is no effective solution has been found today. It has important theoretical values and high practical application values to solve TSP quickly and effectively. This paper introduces TSP firstly, and then discusses the six effective methods generally (Genetic algorithm, Ant Colony algorithm, Hopfield Neural Network, Simulated Annealing algorithm, Artificial Immune algorithm and hybrid optimization algorithms). Meanwhile, the advanta- ges and disadvantages of the six methods are provided, and the emphases of research in the future are given as well.
出处 《计算机与数字工程》 2010年第1期32-35,共4页 Computer & Digital Engineering
关键词 旅行商问题 智能算法 路径 traveling salesman problem (TSP), intelligent algorithms, path
  • 相关文献

参考文献14

  • 1周明,孙树栋编著..遗传算法原理及应用[M].北京:国防工业出版社,1999:203.
  • 2J. H. Holland. Adaptation in Natural and Artificial systems[M]. Ann Arbor. University of Michigan press:1975. 被引量:1
  • 3J. J. Grefenstette. Genetic Algorithms for the Salesman Problem[C]// Proceedings of the First International Conference on Genetic Algorithms, Lawrence Erlbaum Associates, Publishers, 1985 : 60-165. 被引量:1
  • 4B. R. Fox, M B McMahon. Genetic Operators for the Sequencing Problems Foundations of Genetic Algorithms[M]. Rawlins G J E Morgan Kaulmann Publishers, 1991 : 284-300. 被引量:1
  • 5M. Dorigo, V. Maniezzo, A. Colomi. The ant system: Optimization by a colony of cooperation agents [J]. IEEE Transactions on Systems, Man, and Cybernetics Part B, 1996, 26(1):29-41. 被引量:1
  • 6J. J. Hopfield. "Neural" Computation of Decisions in Optimization Problems [J]. Biological Cybernetics, 1985, 52 (1): 141-152. 被引量:1
  • 7王潮,宣国荣.人工神经网络求解TSP问题新方法[J].计算机应用与软件,2001,18(4):59-64. 被引量:17
  • 8阎平凡,张长水编著..人工神经网络与模拟进化计算[M].北京:清华大学出版社,2000:435.
  • 9李茂军,舒宜,童调生.旅行商问题的人工免疫算法[J].计算机科学,2003,30(3):80-82. 被引量:11
  • 10叶玉玲,伞冶.一种混合优化算法及其性能[J].吉林大学学报(工学版),2009,39(1):131-136. 被引量:3

二级参考文献36

共引文献64

同被引文献102

引证文献12

二级引证文献97

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部