期刊文献+

聚类算法在电信客户细分中应用效果的对比研究 被引量:2

The Comparative Study of the Application Effect of Clustering Algorithm in the Tele Communications Customer Segmentation
下载PDF
导出
摘要 聚类算法是数据挖掘中的一个重要研究领域,是一种数据划分或分组处理的重要手段和方法.目前其研究已深入到数据库、数据挖掘、统计等领域并取得了很大的成绩,但是由于聚类算法的多样性,使其在很多行业应用中有着不同的应用效果,基于此,本文通过聚类算法三种指标的比较,给出了一种聚类方法应用效果评估的方法.该方法结合电信的案例应用与K-Means、SOM、BIRCH等聚类方法结果的分析,最后得出K-Means方法在电信客户细分中的应用优越性. Clustering algorithm is an important area of research in a data mining, and is an important means and methods of data partitioning or packet processing. At present this research have been deep into the database, data mining, statistics and other areas and it has made great achievements, but the diversity of clustering algorithm make it have different application effect in many industry's ap- plications. Based on this, this paper presents a method of clustering method application effect assessment by comparison of three indicators of clustering algorithm. This method combines the case applications of telecom with the resuh analysis of clustering methods such as K-Means, SOM, BIRCH ,rod so on. Finally, it obtains the superiority of K-Means approach applied to the telecnmmunication's customer segmentation.
出处 《邵阳学院学报(自然科学版)》 2009年第4期69-73,共5页 Journal of Shaoyang University:Natural Science Edition
关键词 聚类算法 区分度 效果评估 clustering algorithm differentiation effect assessment
  • 相关文献

参考文献5

二级参考文献32

  • 1田启明,王丽珍,尹群.基于网格距离的聚类算法的设计、实现和应用[J].计算机应用,2005,25(2):294-296. 被引量:12
  • 2汤洁,赵凤琴,林年丰,王娟.多种模型集成的方法在土壤养分评价中的应用[J].东北师大学报(自然科学版),2005,37(1):109-112. 被引量:20
  • 3Bonabeau, Dorigo M,Theraulaz G. Inspiration for optimization from social insect behaviour. Nature,2000,406(6) :39-42. 被引量:1
  • 4Dorigo M, Bonabeau E, Theralulaz G. Ant algorithms and stigmergy. Future Generation Computer Systems, 2000, 16(8) : 851-871. 被引量:1
  • 5Stutzle T, Hoos H. MAX-MIN Ant systems. Future Generation Computer Systems, 2000, 16(8) :889-914. 被引量:1
  • 6Bonabeau E, Dorigo M, Theraulaz G. Swarm Intelligence:From Natural to Artificial Systems. New York: Oxford University Press, 1999. 被引量:1
  • 7Gianni Di Caro, Marco Dorigo. AntNet: Distributed stigmergetic control for communications networks. Journal of Artificial Intelligence Research, 1998, 9 : 317 -355. 被引量:1
  • 8Deneubourg J L, Goss S, Frank N, Sendova-hanks A,Detrain C,Chrerien L. The dynamics of collective sorting: robot-like ants and ant-like robots. In: Proceedings of the 1st International Conference on Simulation of Adaptive Behavior: From Animals to Animats, MIT Press/Bradford Books, Cambridge,MA, 1991. 356-363. 被引量:1
  • 9Holland O E, Melhuish C. Stigmergy, self-organisation, and sorting in collective robotics. Artificial Life 1999, 5 (2) : 173-202. 被引量:1
  • 10Lumer E, Faieta B. Diversity and adaptation in populations of clustering ants. In:Proceedings of the 3rd International Conference on Simulation of Adaptive Behavior: From Animals to Animats, 3, MIT Press/Bradford Books, Cambridge, MA, 1994.501-508. 被引量:1

共引文献70

同被引文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部