期刊文献+

基于最小聚类单元的聚类算法研究及其在CRM中的应用 被引量:11

Study on a New Clustering Algorithm Based on Minimum Clustering Cell and its Application in CRM
下载PDF
导出
摘要 将聚类分析技术应用于客户关系管理可以改善客户关系,对将来的趋势和行为进行预测,优化营销策略。在综合分析网格聚类算法和K-均值聚类算法的基础上,提出了基于最小聚类单元(Mini mum Clustering Cell,简称MCC)的聚类算法,介绍了该算法在CRM中的应用。经证明该算法是一种实用的、速度更快、效率更高的改进聚类算法,它克服了K-均值聚类需要事先给定K值、网格聚类要求数据密集的缺点。 The clustering technique of data mining can improve the relationship between enterprise and customers, forecast the trend and behaviors to support people's decision, optimize marketing policy. The advantages and disadvantages of K-means and grid clustering algorithm are given first, then a new clustering algorithm based on Minimum Clustering Cell (MCC) is presented and analyzed, which is proved to be correct, efficient and fast through application in CRM.
出处 《计算机科学》 CSCD 北大核心 2006年第7期188-189,203,共3页 Computer Science
关键词 数据挖掘 聚类 K均值聚类 网格 CRM(客户关系管理) Data mining, Clustering, k-means clustering, Grid, CRM
  • 相关文献

参考文献3

二级参考文献21

  • 1Sheikholeslami G, Chatterjee S, Zhang A. Wave-Cluster: A multi-resolution clustering approach for very large spatial databases. In:Proceedings of the 24th International Conference on Very Large Databases. New York, 1998. 428~439. 被引量:1
  • 2Aggrawal R, Gehrke J, Gunopulos D, Raghawan P. Automatic subspace clustering of high dimensional data for data mining applications. In: Proceedings of the ACM SIGMOD International Conference on Management of Data. Seattle, WA, 1998.94~ 105. 被引量:1
  • 3Wang W, Yang J, Muntz R. STING: A statistical information grid approach to spatial data mining. In: Proceedings of the 23rd International Conference on Very Large Databases. Athens, Greece, 1997.186~ 195. 被引量:1
  • 4Hinneburg A, Keim DA. An efficient approach to clustering in large multimedia databases with noise. In: Proceedings of the International Conference on Knowledge Discovery and Data Mining (KDD'98). New York, 1998.58~65. 被引量:1
  • 5Xing EP, Karp RM. CLIFF: Clustering of high dimensional microarray data via iterative feature filtering using normalized cuts.BIOINFORMATICS, 2001,1(1):1~9. 被引量:1
  • 6Hinneburg A, Keim DA, Brandt W. Clustering 3D-structures of small amino acid chains for detecting dependences from their sequential context in proteins. In: Proceedings of the IEEE International Symposium on BioInformatics and Biomedical Engineering. Washington, DC, 2000. 43-49. 被引量:1
  • 7Xu X, Ester M, Kriegel H, Sander J. A distribution-based clustering algorithm for mining in large spatial databases. In: Proceedings of the 14th International Conference on Data Engineering, ICDE'98. Orlando, FL, 1998. 324~331. 被引量:1
  • 8Silverman B. Density Estimation for Statistics and Data Analysis. Chapman & Hall, 1986.72~113. 被引量:1
  • 9Han J, Kamber M. Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers, 2000.335~398. 被引量:1
  • 10Berchtold S, Keim D, Kriegel HP. The X-tree: An index structure for high-dimensional data. In: Proceedings of the International Conference on Very Large Databases. Bombay, India, 1996.28~39. 被引量:1

共引文献35

同被引文献65

引证文献11

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部