摘要
研究了Littlewood-Paley g函数在加权Herz空间上的弱有界性。利用加权Herz空间的分解理论及几个不等式,证明了若ω1,2ω∈A1,当0<α≤n(1-1/q)时,gψ是.Kq,αp(1ω,ω2)到W.Kqα,p(ω1,2ω)上的有界算子,并且当0<α<n(1-1/q)时,gψ在加权Herz空间上具有强有界性。此结果丰富了Littlewood-Paleyg函数的有界性理论。
The weak boundedness on weighted Herz spaces is considered for Littlewood-Paley g functions. By the decomposition of weighted Herz space and several inequalities, it is obtained that gφ is boundedness from Kq^α,p(ω1,ω2) to WKq^α,p(ω1,ω2), then for ω1,ω2 ∈A1, when 0〈α≤n(1- 1/q), and gφ is strong boundedness on weighted Herz spaces when 0〈α〈n(1-1/q). The result enriches the boundedness theory of Littlewood-Paley g functions.
出处
《青岛大学学报(自然科学版)》
CAS
2009年第4期21-24,共4页
Journal of Qingdao University(Natural Science Edition)