期刊文献+

案例检索及权重优化方法研究及应用 被引量:30

Research on case retrieval with weight optimizing and its application
下载PDF
导出
摘要 案例检索是基于案例推理(CBR)系统的中心环节,检索速度和精度关系着整个系统的质量.文章系统地提出了一套案例检索及其权重优化方法(FRAWO),重点研究了用基于梯形的模糊集和改进的欧氏距离检索算法分别解决案例中模糊概念属性、区间特征属性的相似度计算问题以及采用PULL&PUSH调整策略进行案例权重的调整.在实验系统上基于案例库对FRAWO法的有效性、准确度、效率等进行了实验.实验结果表明,FRAWO法适用于CBR系统,检索速度较快、准确性高. Case retrieval is the focal stage of case-based reasoning systems whose quality is determined by the speed and accuracy of retrieval. In this paper, a new case retrieval method called FRAWO is proposed in a systematical way, in which emphasis is put on the problems of similarity calculation of fuzzy and interval attributes of cases using trapezia-based fuzzy set and an improved Eulerian-Lagrangian distance algorithm, and the dynamic weight of a case is adjusted by adopting PULL&PUSH strategy. Meanwhile, based on the and efficiency of the method are tested by using experimental system, the effectiveness, accuracy, original case base. And the results indicate that FRAWO is suitable for CBR system due to its efficiency and accuracy
出处 《系统工程学报》 CSCD 北大核心 2009年第6期764-768,共5页 Journal of Systems Engineering
基金 国家自然科学基金重点资助项目(70631003) 国家自然科学基金资助项目(70741046) 教育部博士点资助项目(20050359006) 合肥工业大学科学研究发展基金资助项目(2009HGXJ0039) 合肥工业大学博士专项基金资助项目(2007GDBJ039)
关键词 案例推理 案例检索 权重优化 病历生成 cased-based reasoning case retrieval weight optimizing medical record generation
  • 相关文献

参考文献7

二级参考文献28

  • 1周凯波,魏莹,冯珊.基于案例推理的金融危机预警支持系统[J].计算机工程与应用,2001,37(14):18-21. 被引量:23
  • 2吴翼平.预测任务和预测方法的新探索[J].预测,1995,14(4):64-67. 被引量:7
  • 3高慧颖,甘仞初.基于智能聚类的相关度内容检索方法[J].北京理工大学学报,2005,25(12):1075-1078. 被引量:3
  • 4唐玉湘.确定经济规模的相关分析-多指标综合评价法及应用[J].系统工程理论与应用,1996,16(4):56-56. 被引量:1
  • 5[1]HAN Jiawei,KaInber M.Data Mining-Concepts and.Techniques[M].San Francisco,CA:Morgan Kaufmann,2001. 被引量:1
  • 6[2]Sebban M,Nock R.A hybrid flitter/wrapper approach of feature selection using information theory[J].Pattern Recognition,2002,35:835-846. 被引量:1
  • 7[3]Dash M,Liu H.Feature selection for classification[J].Intel Data Anal,1997,1(3):131-156. 被引量:1
  • 8[4]Kira K,Rendell L A.The feature selection problem:traditional methods and a new algorithm[A].Proc Ninth National Conf on Artificial Intelligence[C].Anaheim,CA:AAAI Press,1992.129-134. 被引量:1
  • 9[5]Langley P.Selection of relevant features in machine learning[A].Proc AAAI Fall Sym on Relevance[C].New Orleans,LA:AAAIPress,1994.1-5. 被引量:1
  • 10[6]Dominik S,Wojciech Z.Attribute reduction in the bayesian version of variable precision rough set model[J].Electronic Notes in Theoretical Computer Science,2003,82(4):1-11. 被引量:1

共引文献160

同被引文献354

引证文献30

二级引证文献191

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部