期刊文献+

基于多分割和口袋方法的最小二乘分类算法

Least squares classification algorithm based on multi-segmentation and pocket
下载PDF
导出
摘要 提出了一种改进的最小二乘分类算法,该算法首先利用最小二乘算法对两类数据分类,然后计算每类的中心点,过中心点作已得到的分类线(面)的平行线(面),保留所作平行线(面)之间及线(面)上的数据,剔除其余数据,对剩余数据重新利用最小二乘算法分类,如此循环。在循环过程中利用口袋方法记录下具有最好的分类效果的分类线(面),循环结束后口袋中即为最佳分类线(面)。实验结果表明,该算法有效的解决了原有最小二乘分类算法的缺陷,有着良好的分类效果。 An improved least squares algorithm is presented.The two kinds of data are classified by least squares algorithm first,and then the mean points of the two kinds of data are calculated.After drawing the parallel lines(planes) of the classification line(plane) through the mean points respectively,some data which between the lines(planes) or on the lines(planes) are preserved,the others are deleted.The rest data are re-classified by the least squares algorithm.In these iterative loops the classification line(plane) which has the best classification result is stored in a pocket.At last the classification line(plane) is founded.Experimental results prove the avoidance of the original algorithm shortcoming and the higher performance of the new least squares algorithm.
作者 何江萍
出处 《计算机工程与设计》 CSCD 北大核心 2009年第24期5712-5714,共3页 Computer Engineering and Design
关键词 分类 最小二乘算法 口袋方法 多分割 中心点 classification least squares algorithm pocket method multi-segmentation mean point
  • 相关文献

参考文献8

  • 1Sergios Theodoridis,Konstantions Koutroumbas.Pattem recognition 3rd[M].Academic Press,2006. 被引量:1
  • 2Marcin Korze.Maximal margin estimation with perceptron-like algorithm[C].Proceedings of the 9th International Conference on Artificial Intelligence and Soft Computing Table of Contents, 2006:597-608. 被引量:1
  • 3Ye J.Least squares linear discriminant analysis[C].Proceedings of the 24th Annual International Conference on Machine Learning,2007,1087-1094. 被引量:1
  • 4张著英,黄玉龙,王翰虎.一个高效的KNN分类算法[J].计算机科学,2008,35(3):170-172. 被引量:55
  • 5许建华,张学工.经典线性算法的非线性核形式[J].控制与决策,2006,21(1):1-6. 被引量:12
  • 6Lu D, Weng Q. A survey of image classification methods and techniques for improving classification performance[J].International Journal of Remote Sensing archive,2007,28(5):823-870. 被引量:1
  • 7许建华,张学工,李衍达.一种基于核函数的非线性感知器算法[J].计算机学报,2002,25(7):689-695. 被引量:23
  • 8Ratsch G.Robust boosting via convex optimization[D].Potsdam Germany, University of Potsdam,Department of Computer Science,2001. 被引量:1

二级参考文献52

  • 1胡学钢,郭亚光.一种基于粗糙集的朴素贝叶斯分类算法[J].合肥工业大学学报(自然科学版),2006,29(2):169-172. 被引量:11
  • 2张冬玲.基于粗糙集理论的属性约简算法的实现[J].计算机应用,2006,26(B06):78-79. 被引量:11
  • 3Anlauf J K, Biehl M. The Adatron, An Adaptive Perceptron [J]. Europhysics Letter, 1989, 10(7):687-692. 被引量:1
  • 4Vapnik V N. The Nature of Statistical Learning Theory [M]. Second Edition. New York: Springer-Verlag, 1999. 被引量:1
  • 5Vapnik V N. Statistical Learning Theory EM]. New York: John Wiley & Sons, 1998. 被引量:1
  • 6Cristianini N, Taylor J S. An Introduction to Support Vector Machines and other Kernel-Based Learning Methods [M]. Cambridge UK: Cambridge University Press, 2000. 被引量:1
  • 7Scholkopf B, Smola A J. Learning with Kernels-Support Vector Machines, Regularization, Optimization and Beyond[M]. Cambridge MA: MIT Press, 2001. 被引量:1
  • 8Aizerman M A, Braverman E M, Rozonoer L I.Theoretical Foundations of the Potential Function Method in Pattern Recognition Learning [J].Automation and Remote Control, 1964, 25(6): 821-837. 被引量:1
  • 9Tou J T, Gonzalez R C, Pattern Recognition Principles[M]. New York: Addison-Wesly, 1974,. 被引量:1
  • 10Berg C, Christensen J P R, Ressel P. Harmonic Analysis on Semigroup [M]. New York z Spring-Verlag, 1984. 被引量:1

共引文献87

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部