期刊文献+

一种基于优胜劣汰的多粒子群替代优化算法的设计 被引量:1

ONE REPLACEMENT OPTIMIZATION OF MULTI-PARTICLE SWARMS BASED ON THE SURVIVAL OF THE FITTEST
下载PDF
导出
摘要 微粒群算法是一种新颖的优化算法,已成功应用于许多优化问题,但该算法容易陷入局部极值.针对这种缺陷,提出了一种基于优胜劣汰的多粒子群替代算法,该算法先通过多个种群彼此独立地搜索解空间,增强全局搜索能力;各种群每次进化完成后,核心种群中的最差微粒与其他种群的最好微粒互相替代.通过对3种常用测试函数进行测试和比较,结果表明该算法比标准微粒群算法具有更低的平均最好适应值,可快速收敛到全局最优解,优化效率明显提高. PSO algorithm is relatively a new optimization algorithm,it has been successfully used in many ptimization problems,but the algorithm is vulnerable to local extreme.One Replacement Optimization of Multi-Particle Swarms is proposed.Particle swarms are employed to search in the solution space independently that enhances the global searching ability.After each particle swarms evolutions,the worst particles are replaced by the other swarm's best particles.It makes the particle escaped from the premature convergence and improves the stability of the algorithm.Through testing and comparison with the three kinds of commonly used test functions,the results show that the average of the best fitness of the algorithm is lower than the standard PSO algorithm,it can rapidly converge to the global optimal solution,the optimization efficiency is increased significantly.
出处 《陕西科技大学学报(自然科学版)》 2009年第6期112-115,120,共5页 Journal of Shaanxi University of Science & Technology
关键词 PSO 优化 群智能 多粒子群 PSO optimization swarm intelligence multi-particle swarms
  • 相关文献

参考文献9

二级参考文献35

  • 1曾建潮,崔志华.一种保证全局收敛的PSO算法[J].计算机研究与发展,2004,41(8):1333-1338. 被引量:160
  • 2王芳,邱玉辉.一种引入轮盘赌选择算子的混合粒子群算法[J].西南师范大学学报(自然科学版),2006,31(3):93-96. 被引量:15
  • 3段海滨,王道波,于秀芬.几种新型仿生优化算法的比较研究[J].计算机仿真,2007,24(3):169-172. 被引量:20
  • 4SHI Y H, EBERHART R. A modified particle swarm optimizer [ C]//Proc of I EEE International Conference on Evolutionary Computation. Piscataway, N J: IEEE Press, 1998:69-73. 被引量:1
  • 5KENNEDY J. The particle swarm: social adaptation of knowledge [ C ]//Proc of IEEE International Conference on Evolutionary Computation. Piscataway, NJ: IEEE Service Center, 1997:303-308. 被引量:1
  • 6ANGELINE P J. Evolutionary optimization versus particle swarm optimization : philosophy and performance difference [ C ]//Proc of the 7th Annual Conference on Evolutionary Programming. Gemany: Springer, 1998:601-610. 被引量:1
  • 7COLONI A, DORIGO M, MANYIZZO V. Distributed optimization by ant colonies [ C]// Proceedings of Parallel Problem Solving from Nature ( PPSN). Pans, France: Elsevier, 1991 : 134 - 142. 被引量:1
  • 8KENNEDY J, EBERHART R. Particle swarm optimization [ C]// Proceedings of IEEE International Conference on Neural Network. Washington, DC: IEEE Press, 1995:1942-1948. 被引量:1
  • 9SUN J, FENG B, XU W B. Particle swarm optimization with parti- cles having quantum behavior [ C]// IEEE Proceedings of Congress on Evolutionary Computation. Washington, DC: IEEE Press, 2004: 325 - 331. 被引量:1
  • 10LIU J, XU W B, SUN J. Quantum-behaved particle swarm optimi- zation with mutation operator [ C]// Proceedings of IEEE Interna- tional Conference on Tools with Artificial Intelligence. Washington, DC: IEEE Press, 2005:237-240. 被引量:1

共引文献429

同被引文献13

  • 1傅强,胡上序,赵胜颖.基于PSO算法的神经网络集成构造方法[J].浙江大学学报(工学版),2004,38(12):1596-1600. 被引量:18
  • 2熊伟丽,徐保国.基于PSO的SVR参数优化选择方法研究[J].系统仿真学报,2006,18(9):2442-2445. 被引量:66
  • 3Kennedy J, Eberhart R. Particleswarm optimization [ C ]// Proceedings of IEEE International Conference on Neural Networks. Perth, Australia : [ s. n. ] , 1995 : 1942 - 1948. 被引量:1
  • 4Mendes R, Kennedy J. The full informed panicle swarm: Simpler maybe better [ C ]// IEEE Transaction Evolutionary Computation,2004,8(3) :204 -210. 被引量:1
  • 5Higashi N, Iba H. Panicle swarm optimaization whit Gaussian mutation [ C ]// Proceedings of the 2003 Congress on Evolutionary Computation, Piscataway: IEEE Press, 2003:72 -79. 被引量:1
  • 6Basker S, Suganthan P N. A novel concurrent panicle swarm optimization[ C ]// Proceedings of the 2004 Congress on Evolutionary Computation. Washington, DC: IEEE Computer Society, 2004,1:792 - 796. 被引量:1
  • 7A1-Kazemi B. Multi-phase Panicle swarm optimiazation [ D ].Computer Engineering in the Graduate Sclool, Syracuse University, 2002. 被引量:1
  • 8Rigest J, Vesterstr J S. A diversityguided particle swarmoptimizer: theARPSO, 2002 - 02 [ R ]. [ S. l ] : Universuty ofAarhus,2002. 被引量:1
  • 9Clerem, Kennedy J. The particle swarm: explosion, stability and convergence in a multi-dimensional complex space [ J ]. IEEEJournalofEvolutionary Computation, 2002, 6 ( 1 ) : 58 -73. 被引量:1
  • 10Selman B, Kautzh, Cohen B. Noise strategies for improving local search[ C]//Procof the 12'hNational Conference on AI, AmericanAssociation forArtificial Intelligence. Seattle: [ s. n. ] ,1994:337-343. 被引量:1

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部