期刊文献+

Effects of the Cr doping on structure and optical properties of ZnO thin films 被引量:5

Effects of the Cr doping on structure and optical properties of ZnO thin films
原文传递
导出
摘要 Cr-doped ZnO thin films are prepared on glass substrates by the magnetron sputtering technique. An X-ray diffraction (XRD) is used to analyze the structural properties of the thin films. It indicates that all the thin films have a preferential c-axis orientation. The peak position of the (002) plane shifts to the higher 2θ value, and the peak intensity decreases with the increase of Cr doping. The results of the scanning electron microscopy (SEM) show that the surface morphology becomes loose with the increase of Cr doping. Besides, it is found from the photoluminescence (PL) measurement at room temperature that the ultraviolet emission peak and green emission band are located at 375 nm and 520 nm, respectively, and both intensities of them decrease with the increase of the Cr doping concentration, while the band gap of the ultraviolet emission shifts to the lower wavelength. The experimental results confirm that the optimal Cr doping concentration is 2 at. %. Cr-doped ZnO thin films are prepared on glass substrates by the magnetron sputtering technique. An X-ray diffraction (XRD) is used to analyze the structural properties of the thin films. It indicates that all the thin films have a preferential c-axis orientation. The peak position of the (002) plane shifts to the higher 2θ value, and the peak intensity decreases with the increase of Cr doping. The results of the scanning electron microscopy (SEM) show that the surface morphology becomes loose with the increase of Cr doping. Besides, it is found from the photoluminescence (PL) measurement at room temperature that the ultraviolet emission peak and green emission band are located at 375 nm and 520 nm, respectively, and both intensities of them decrease with the increase of the Cr doping concentration, while the band gap of the ultraviolet emission shifts to the lower wavelength. The experimental results confirm that the optimal Cr doping concentration is 2 at. %.
出处 《Optoelectronics Letters》 EI 2010年第1期37-40,共4页 光电子快报(英文版)
基金 supported by Tianjin Natural Science Foundation (No.06YFJZJC00100)
  • 相关文献

参考文献11

二级参考文献22

共引文献3

同被引文献69

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部