期刊文献+

磁共振扩散谱成像 被引量:2

Diffusion spectrum magnetic resonance imaging
下载PDF
导出
摘要 Diffusion spectrum imaging(DSI),a newly developed MRI technique,affords the capacity to map complex fiber architectures in tissues with sufficient angular resolution by imaging the spectra of tissue water diffusion.By contrast,diffusion tensor imaging(DTI),the currently widely used technique based on the 2nd order tensor model,obtains an approximation of the complex diffusion,and provides only one global maximal direction corresponding to the primary eigenvector for each voxel.As a generalized model-free diffusion imaging technique,firstly,DSI employs the probability density function to describe the diffusion process in each voxel;secondly,a sufficient dense signal sample derived from repeated applications of diffusion-weighed gradients ensures its capability to resolve the diffusion probability density function;thirdly,specific computer visualization techniques are used to extract the diffusion information and reconstruct the geometrical properties of tissue microstructure.The capacity to unravel complex tissue architecture,recent improvements in hardware and ongoing optimization of sequence design and algorithm enable a rapid growth of DSI for research use and future incorporation into clinical protocols.This paper introduces the basic principles of DSI and then compares the characteristics of DSI and DTI schemes.Finally,the typical applications of DSI to date are reviewed.Abstract:SUMM ARY D iffusion spectrum imaging(DSI),a newly developed MR I technique,affords the capacity to map complex fiber architectures in tissues with sufficient angular resolution by imaging the spectra of tissue water d iffusion.By contrast,d iffusion tensor imaging(DTI),the currently widely used technique based on the 2nd order tensormodel,obtains an approximation of the complex d iffusion,and provides on-ly one globalmaximal d irection correspond ing to the primary eigenvector for each voxel.As a generalized model-free d iffusion imaging technique,firstly,DSI employs the probability density function to describe the d iffusion process Diffusion spectrum imaging(DSI),a newly developed MRI technique,affords the capacity to map complex fiber architectures in tissues with sufficient angular resolution by imaging the spectra of tissue water diffusion.By contrast,diffusion tensor imaging(DTI),the currently widely used technique based on the 2nd order tensor model,obtains an approximation of the complex diffusion,and provides only one global maximal direction corresponding to the primary eigenvector for each voxel.As a generalized model-free diffusion imaging technique,firstly,DSI employs the probability density function to describe the diffusion process in each voxel;secondly,a sufficient dense signal sample derived from repeated applications of diffusion-weighed gradients ensures its capability to resolve the diffusion probability density function;thirdly,specific computer visualization techniques are used to extract the diffusion information and reconstruct the geometrical properties of tissue microstructure.The capacity to unravel complex tissue architecture,recent improvements in hardware and ongoing optimization of sequence design and algorithm enable a rapid growth of DSI for research use and future incorporation into clinical protocols.This paper introduces the basic principles of DSI and then compares the characteristics of DSI and DTI schemes.Finally,the typical applications of DSI to date are reviewed.Abstract:SUMM ARY D iffusion spectrum imaging(DSI),a newly developed MR I technique,affords the capacity to map complex fiber architectures in tissues with sufficient angular resolution by imaging the spectra of tissue water d iffusion.By contrast,d iffusion tensor imaging(DTI),the currently widely used technique based on the 2nd order tensormodel,obtains an approximation of the complex d iffusion,and provides on-ly one globalmaximal d irection correspond ing to the primary eigenvector for each voxel.As a generalized model-free d iffusion imaging technique,firstly,DSI employs the probability density function to describe the
出处 《北京大学学报(医学版)》 CAS CSCD 北大核心 2009年第6期716-720,共5页 Journal of Peking University:Health Sciences
基金 国家自然科学基金重点项目(30530290) 首都医学发展基金项目(20071001)~~
关键词 磁共振成像 弥散 Diffusion magnetic resonance imaging
  • 相关文献

参考文献27

  • 1Bihan DL, Turner R, Douek P, et al. Diffusion MR imaging: clinical applications [ J ]. Am J Roentgenol, 1992, 159 ( 3 ) : 591 -599. 被引量:1
  • 2Bihan DL, Mangin JF, Poupon C ,et al. Diffusion tensor imaging: concepts and applications[ J]. J Magn Reson Imaging, 2001,13 (4) : 534 -546. 被引量:1
  • 3Wedeen VJ, Reese TG, Tuch DS, et al. Mapping fiber orientation spectra in cerebral white matter with fourier-transform diffusion MRI[ C ]. Proc Int Soc Magn Reson Med. California: ISMRM,2000.82. 被引量:1
  • 4Hagmann P, Jonasson L, Maeder P, et al. Understanding diffusion MR imaging techniques: from scalar diffusion-weighted imaging to diffusion tensor imaging and beyond[ J]. Radiographics, 2006, 26 ( Suppl 1 ) : S205 - 223. 被引量:1
  • 5Lin CP, Wedeen V J, Chen JH , et al. Validation of diffusion spectrum magnetic resonance imaging with manganese-enhanced rat optic tracts and ex vivo phantoms [ J ]. Neuro Image, 2003, 19 (3) : 482 - 495. 被引量:1
  • 6Stejskal E, Tanner J. Spin diffusion measurements : spin echoes in presence of a time-dependent field gradient [ J ]. J Chem Phys, 1965, 42(i) : 288 -300. 被引量:1
  • 7Sand M, Barker PB. Diffusion magnetic resonance imaging : It's principles and applications[J]. Anat Rec, 1999, 257(3 ) : 102 - 109. 被引量:1
  • 8Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and itnagirtg[ J]. Biophys J, 1994, 66(1) : 259 -267. 被引量:1
  • 9韩鸿宾主编..临床磁共振成像序列设计与应用 第2版[M].北京:北京大学医学出版社,2007:320.
  • 10Westin CF, Maier SE, Mamata H, et al. Processing and visualization for diffusion tensor MRI[J]. Med Image Anal, 2002, 6(2) : 93 - 108. 被引量:1

同被引文献24

  • 1施冲,吴群林,刘中华,徐波,于冬男,戴建强,郄文斌.脑功能区手术唤醒麻醉与清醒程度的研究[J].中国微侵袭神经外科杂志,2005,10(11):497-498. 被引量:27
  • 2周声汉,施冲,曾因明.脑功能区手术唤醒麻醉研究进展[J].中国微侵袭神经外科杂志,2006,11(10):470-473. 被引量:16
  • 3吴劲松,毛颖,姚成军,庄冬晓,周良辅.术中磁共振影像神经导航治疗脑胶质瘤的临床初步应用(附61例分析)[J].中国微侵袭神经外科杂志,2007,12(3):105-109. 被引量:42
  • 4Murata Y, Sakatani K, Katayama Y, et al. Decreases of blood oxygenation level - -dependent signal in the acti- vated motor cortex during functional recovery after resec- tion of a glioma [ J ]. Am J Neuroradiol, 2004,25 (7) : 1242 - 1246. 被引量:1
  • 5Wang W, Steward CE, Desmond PM. Diffusion tensor imaging in glioblastoma muhiforme and brain metasta- ses : the role of p, q, L, and fractional anisotropy [ J ]. Am J Neuroradio1,2009,30( 1 ) :203 - 208. 被引量:1
  • 6Gulati S, Bemtsen EM, Solheim O, et al. Surgical re- section of high - grade gliomas in eloquent regions guided by blood oxygenation level dependent functional magnetic resonance imaging, diffusion tensor tractogra- phy, and intraoperative navigated 3D ultrasound [ J ]. Minim Invasive Neurosurg,2009,52 ( 1 ) : 17 - 24. 被引量:1
  • 7Oishi M, Kameyama S, Watanabe M, et al. Presurgical functional mapping of the sensorimotor area using evoked magnetic fields [ J ]. No Shinkei Geka, 2002,30 ( 4 ) : 391 - 397. 被引量:1
  • 8Alberstone CD, Skirboll SL, Benzel EC, et al. Magnet- ic source imaging and brain surgery: presurgical and in- traoperative planning in 26 patients [ J ]. J Neurosurg, 2000,92( 1 ) :79 -90. 被引量:1
  • 9Keles GE. Intracranial neuronavigation with intraopera- tire magnetic resonance imaging[ J]. Curr Opin Neurol, 2004,17(4) :497 - 500. 被引量:1
  • 10Claus EB, Horlacher A, Hsu L, et al. Survival rates in patients with low - grade glioma after intraoperative mag- netic resonance image guidance [ J ]. Cancer, 2005,103 (6) :1227 - 1233. 被引量:1

引证文献2

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部