期刊文献+

基于Web的无指导译文消歧词模型与N-gram模型及对比研究 被引量:3

Comparison of Web-Based Unsupervised Translation Disambiguation Word Model and N-gram Model
下载PDF
导出
摘要 该文提出了基于Web的无指导译文消歧的词模型及N-gram模型方法,并在尽可能相同的条件下进行了比较。两种方法均利用搜索引擎统计不同搜索片段在Web上的Page Count作为主要消歧信息。词模型定义了汉语词汇与英语词汇之间的双语词汇Web相关度,根据汉语上下文词汇与英语译文之间的相关度进行消歧;N-gram模型首先假设不同语义下的多义词N-gram序列行为模式不同,从而可对多义词不同语义类下词汇在实例中的N-gram序列进行统计与分析以进行消歧。两个模型的性能均超过了在国际语义评测SemEval2007的task#5上可比较的最好无指导系统。对这两个模型进行试验对比可发现N-gram模型性能优于词模型,也表明组合两类模型的结果有进一步提升消歧性能的潜力。 This paper describes and compares web-based unsupervised translation disambiguation word model and N-gram model. For acquiring knowledge of disambiguation, both two models put differents queries to search engine and statistic page counts which it returned. Word model defines Web Bilingual Relatedness(WBR) between Chinese words and English words and disambiguates word sense by maxmizing Web Bilingual Relatedness between contexts and the translations of target word. Based on the hypothesis that the pattern of a polysemant is different while different sense of it is being used, N-gram model makes disambiguation by statisticing and analyzing N-grams of words in different semantic class of that polysemant. Both of the two models are evaluated on the SemEval2007 task#5, achieving the top performance against the state-of-the-art comparable unsupervised systems. Furthmore, N-gram model outperforms word model and the performence has potential for promotion when combine the results of that two class model.
出处 《电子与信息学报》 EI CSCD 北大核心 2009年第12期2969-2974,共6页 Journal of Electronics & Information Technology
基金 国家重点基础研究发展计划(2004CB318102)资助课题
关键词 计算语言学 无指导译文消歧 词模型 N-GRAM模型 PAGE COUNT 双语词汇Web相关度 Computational linguistics Unsupervised translation disambiguation Word model N-gram model Page Count Web Bilingual Relatedness(WBR)
  • 相关文献

参考文献2

二级参考文献15

  • 1Edmonds P and Cotton S. Senseval-2: Overview. In Proceedings of the Second International Workshop on evaluating Word Sense Disambiguation Systems, Toulouse, France, 2001: 1-5. 被引量:1
  • 2Mihalcea R, Chklovski T, and Killgariff A. The Senseval-3 English lexical sample task. In Proceedings of the Third InternationalWorkshop on the Evaluation of Systems for the Semantic Analysis of Text (Senseval-3). Barcelona, Spain, 2004: 25-28. 被引量:1
  • 3Li Hang and Li Cong. Word translation disambiguation using bilingual bootstrapping. Computational Linguistics, 2004, 20(4): 563-596. 被引量:1
  • 4Yarowsy D. Unsupervised word sense disambiguation rivaling supervised methods.In Proceedings of the 33^rd Annual Meeting of Association for Computational Linguistics (ACL 1995)(Cambridge, MA, June 1995): 189-196. 被引量:1
  • 5Gale W A, Church K W, and Yarowsky D. Using bilingual materials to develop word sense disambiguation methods. In Proceedings of the International Conference on Theoretical and Methodological Issues in Machine Translation. Montreal1992: 101-112. 被引量:1
  • 6Diab M and Resnik P. An unsupervised method for word sense tagging using parallel corpora. In Proceedings of the 40th Anniversary Meeting of the Association for Computational Linguistics (ACL-02). Philadelphia, USA. 2002: 255-262. 被引量:1
  • 7Ng Hwee Tou, WangBin, and Chan Yee Seng. Exploiting parallel texts for word sense disambiguation: an empirical study. In Proceedings of the 41st Annual Meeting of the Association for Computational Linguistics. Sapporo, Japan. 2003: 465-462. 被引量:1
  • 8Wang X and Carroll J. Word sense disambiguation using sense examples automatically acquired from a second language. In Proceedings of HLT/EMNLP, Vancouver,Canada. 2005: 547-554. 被引量:1
  • 9Leacock C, Chodorow M, and Miller G A. Using corpus statistics and WordNet relations for sense identification. Computational Linguistics, 1998, 24(2): 147-165. 被引量:1
  • 10Agirre E and Martfnez D. Unsupervised WSD based on automatically retrieved examples: The importance of bias. Proceedings of the Conference on Empirical Methods in NLP. Barcelona, Spain. 2004: 25-32. 被引量:1

共引文献7

同被引文献33

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部