期刊文献+

基于Contourlet变换和主成分分析的高光谱数据噪声消除方法 被引量:12

Denoising of Hyperspectral Data Based on Contourlet Transform and Principal Component Analysis
下载PDF
导出
摘要 该文提出了一种适合于高光谱超维数据处理的基于Contourlet变换和主成分分析的噪声消除方法。该方法首先利用Contourlet变换实现图像的稀疏表示,再利用主成分分析对Contourlet系数进行适当地消噪处理。通过对OMIS图像的实验结果表明该方法能够同时消除高光谱多个波段图像中的噪声,从整体上改善高光谱图像质量,且性能上要优于PCA和Contourlet变换方法。 This paper proposes a denoising method of hyperspectral super-dimensional data based on Contourlet transform and principal component analysis. At first the sparse representation of images is accomplished with Contourlet transform. Then the Contourlet coefficients are processed with principal component analysis. The experimental results based on OMIS images show that the proposed method can simultaneously eliminate noises in multi-band hyperspectral images, improve the quality of the whole hyperspectral data and outperforms methods based on PCA and Contourlet transform respectively.
出处 《电子与信息学报》 EI CSCD 北大核心 2009年第12期2892-2896,共5页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60802084)资助课题
关键词 图像处理 高光谱遥感 去噪 CONTOURLET变换 主成分分析 Image processing Hyperspectral remote sensing Denoising Contourlet transform Principal Component Analysis (PCA)
  • 相关文献

参考文献13

  • 1浦瑞良,宫鹏著..高光谱遥感及其应用[M].北京:高等教育出版社,2000:254.
  • 2Vaiphasa C. Consideration of smoothing techniques of hyperspectral remote sensing[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2006, 60(2): 91-99. 被引量:1
  • 3Torrecilla E, Aymerich I F, and Pons S, et al.. Effect of spectral resolution in hyperpspectral data analysis[J]. Geoscience and Remote Sensing Symposium, 2007, 23(28): 910-913. 被引量:1
  • 4陈志刚,束炯.高光谱图像光谱域噪声去除的经验模态分解方法[J].红外与毫米波学报,2008,27(5):378-382. 被引量:14
  • 5Backer S D, Piurica A, and Huysmans B, et al.. Denoising of multicomponent images using wavelet least-squares estimators[J]. Image and Vision Computing, 2008, 26(7): 1038-1051. 被引量:1
  • 6Rakwatin P, Takeuchi W, and Yasuoka Y. Stripe noise reduction in MODIS data by combining histogram matching with facet filter. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(6): 1844-1856. 被引量:1
  • 7Stephan K, Hibbitts C A, and Hoffmann H, et al.. Reduction of instrument-dependent noise in hyperspectral image data using the principal component analysis: Applications to Galileo NIMS data[J]. Planetary and Space Science, 2008, 56(3): 406-419. 被引量:1
  • 8McCabe G P. Principal variables[J]. Technometrics, 1984, 26(2): 137-144. 被引量:1
  • 9Ramakrishna B, Wang Jing, and Chang C I, et al.. Spectral/spatial hyperspectral image compression in conjunction with virtual dimensionality. Algorithms and technologies for multispectral, hyperspectral, and ultraspectral imagery XI, Proc. 5806, SPIE, 2005: 772-781. 被引量:1
  • 10Do Mi N and Vetterli Ma. The Contourlet transform: An efficient directional multiresolution image representation[J]. IEEE Transactions on Image Processing, 2005, 14(2): 2091-2106. 被引量:1

二级参考文献28

  • 1盖广洪.经验模态分解的一种改进算法[J].西安交通大学学报,2004,38(11):1199-1202. 被引量:22
  • 2王强,束炯,尹球.高光谱图像光谱域噪声检测与去除的DSGF方法[J].红外与毫米波学报,2006,25(1):29-32. 被引量:23
  • 3郁梅,易文娟,蒋刚毅.基于Contourlet变换尺度间相关的图像去噪[J].光电工程,2006,33(6):73-77. 被引量:30
  • 4David L. Donoho. Denoising by soft-thresholding[J]. IEEE Trans. Information Theory, 1995, 41(3) : 613-627 被引量:1
  • 5Do M N, Vetterli M. Contourlets: Directional multiresolution image representation[C]. Proc. IEEE International Conference on Image Processing, Rochester, NY: 2002. 357-360 被引量:1
  • 6R. R. Coifman, D. L. Donoho. Translation-invariant de-noising [C]. Wavelets and Statistics, Springer Lecture Notes in Statistics 103, New York: Springer,Verlag, 1995. 125-150 被引量:1
  • 7Alyson K. Fletcher, Kannan Ramchandran, Vivek K. Goyal. Wavelet denoising by recursive cycle spinning[C]. Proc. IEEE International Conference Image Processing, Rochester, NY; 2002. 873-876 被引量:1
  • 8Alyson K. Fletcher, Kannan Ramchandran, Vievk K. Goyal. Iterative projective wavelet methods for denoising [C]. Proc. SPIE, 2003, 5207: 9-15 被引量:1
  • 9David L. Donoho, lain M. Johnstone. Threshold selection for wavelet shrinkage of noisy data [C]. Proceedings of the 16th Annual International Conference of IEEE, Engineering in Medicine and Biology Society, 1994, 1 : A24-A25 被引量:1
  • 10Levent Sendur, I. van W. Selesnick. Bivariate shrinkage functions for wavelet-based denoising exploiting interseale dependency[J]. IEEE Trans. Signal Processing, 2002, 50(11): 2744-2756 被引量:1

共引文献49

同被引文献146

引证文献12

二级引证文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部