期刊文献+

基于最小噪声分离变换的遥感影像融合方法 被引量:17

THE REMOTE SENSING IMAGE FUSION METHOD BASED ON MINIMUM NOISE FRACTION
下载PDF
导出
摘要 针对主成分分析(PCA)融合算法的不足和最小噪声分离(MNF)变换的优势,以IKONOS新型高分辨率观测卫星提供的全色和多光谱数据为实验数据,提出了基于最小噪声分离变换的遥感影像融合方法,并与其它融合方法进行定量和视觉比较,结果表明该方法能得到更好的融合效果。 The Principal Component Analysis (PCA) image fusion method has been used widely in recent years. However, without considering the effects of noise on the fusion image, its application is only limited to the fusion region. The Minimum Noise Fraction (MNF) transform is a self - contained component analysis method which considers the effects of noise on the fusion image. This technique is employed in such fields as the determination of the inherent dimensionality of image data and segregation of noise in the data ; nevertheless, it is not applied to image fusion nowadays. Therefore, in view of the defectiveness of the PCA image fusion method and the superiority of the MNF transformation, the authors put forward a new MNF transform Remote Sensing fusion method in which both IKONOS multi - spectral image and panchromatic image are used. Visual and quantitative comparison demonstrates that this technique is better than other fusion methods.
出处 《国土资源遥感》 CSCD 2007年第2期53-55,共3页 Remote Sensing for Land & Resources
基金 地理空间信息工程国家测绘局重点实验室基金项目(B2524)
关键词 影像融合 主成分分析变换 最小噪声分离变换 HIS变换 Image fusion PCA ( Principal Component Analysis) MNF ( Minimum Noise Fraction) HIS ( Hue Intensity Saturate)
  • 相关文献

参考文献8

二级参考文献37

  • 1Neil H Timm. Applied Multivariate Analysis[M]. Springer, 2002. 被引量:1
  • 2Tadjudin Saldju, Landgrebe David. Classification of high dimensional data with limited training [EB/OL].http://dynamo.ecn.purdue.edu/~landgreb/Saldju_TR.pdf. 被引量:1
  • 3Hsu H P, Tseng H Y. Feature extraction for hyperspectral image[A]. Proc. 20th ACRS[C]. Hong Kong, 1999,1:405~410. 被引量:1
  • 4Hyvrinen A, J Karhunen, Oja E. Independent component analysis[M].Wiley, 2001. 被引量:1
  • 5Stefan A Robila, Pramod K Varshney. Target detection in hyperspectral images based on independent component analysis[A]. Proc. SPIE Int. Soc. Opt. Eng[C]. Orlando, USA, 2002. 被引量:1
  • 6Chiang Shao-Shan, Chang Chein-I, Ginsberg I W. Unsupervised hyperspectral image analysis using independent component analysis [A]. Geoscience and Remote Sensing Symposium, 2000 Proceedings. IGARSS 2000 IEEE 2000 International Vol.7[C]. 2000. 3136~3138. 被引量:1
  • 7Shah C A, Arora M K, Robila S A, et al. ICA mixture model based unsupervised classification of hyperspectral imagery [A]. 31st Applied Imagery Pattern Recognition Workshop, 2002. Proceedings[C]. 2002. 29~35. 被引量:1
  • 8Green A A, Berman M, Switzer P, et al . A transformation for ordering multispectral data in terms of image quality with implications for noise removal[J]. Geoscience and Remote Sensing, IEEE Transactions on, 1988, 26(1):65~74. 被引量:1
  • 9Lee J B, Woodyatt A S, Berman M. Enhancement of high spectral resolution remote-sensing data by a noise-adjusted principal components transform[J]. Geoscience and Remote Sensing, IEEE Transactions on, 1990, 28(3):295~304. 被引量:1
  • 10Cheriyadat A, Bruce L M. Why principal component analysis is not an appropriate feature extraction method for hyperspectral data [A]. Geoscience and Remote Sensing Symposium, 2003. IGARSS '03. Proceedings. 2003 IEEE International.Vol.6[C]. 2003. 3420~3422. 被引量:1

共引文献30

同被引文献237

引证文献17

二级引证文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部