摘要
近十几年来,时域有限差分算法(FDTD)得到了快速发展,然而该算法一直受稳定性条件(CFL)的限制。为突破这一限制一种具有弱条件稳定(WCS)的FDTD算法得到发展,提高了FDTD的计算效率,但该方法存在精度不高的缺点。文中针对弱条件稳定FDTD方法精度不高这一弱点,提出了一种新的算法,该算法具有弱条件稳定性,且计算速度比ADI-FDTD方法有显著提高,并通过数值实验验证了该方法的准确性和有效性。
Finite-difference time-domain (FDTD) has been developed greatly in recent decades. However, for the conventional explicit FDTD method, the computational efficiency is restricted by the Courant-Friedrieh-Levy (CFL) stability condition. Though, the accuracy of the WCS is not good as FDTD. In recent years, a weakly conditionally stable (WCS) FDTD is adapted for FDTD. In this paper, a novel split-step finite-difference time-domain (NSS-FDTD) method for solving three-dimensional Maxwell's equations is presented, which is also proven to be weakly conditionally stable (WCS). Com- pared with the ADI-FDTD method, the proposed method has high calculating speed. The efficiency and accuracy of the pro- posed method are validated by the numerical simulation.
出处
《微波学报》
CSCD
北大核心
2009年第6期18-22,共5页
Journal of Microwaves
基金
国家自然科学基金重点项目(60831001)
国防预研基金